博碩士論文 953403022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:13.59.228.75
姓名 莊瀚伯(Han-bo Zhuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 聲能激振式植牙術後骨缺損與骨整合評估研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 牙科植體-齒槽骨界面骨整合發展為考量術後置放假牙之重要因素,若骨整合不佳,通常伴隨骨缺損現象出現,致使界面穩固度降低,造成手術失敗,故諸多研究對此開發檢測技術與裝置,但迄今仍無法提供決定術後成敗之診斷標準,且各法亦存在限制及缺點。本研究提出非接觸式聲能激振-位移響應量測技術,並進行體外/體內測試,體外實驗方面,設計各類單/對側骨缺損模型與邊界固定高度,待癒合帽鎖附且固定於金屬虎鉗座後量測,利用喇叭產生聲能掃頻訊號激振模型,電容式位移計接收振動響應訊號,取得響應頻譜之第一峰值共振頻率,經統計分析,探討共振頻率、缺損結構與邊界固定條件之關係,該結果亦與市售檢測儀ISQ及有限元素模擬值比較,可知:單/對側缺損之垂直深度增加,共振頻率下降,虎鉗固定高度增加,各模型頻率上升,皆具顯著差異;另共振頻率變化與ISQ值具高相關性,且數值模態分析之共振頻率亦呈現相同變化趨勢。體內動物實驗方面,將有無表面塗佈處理之兩植體,嵌入白兔左脛骨並鎖附癒合帽後縫合,於骨整合過程,以自行發展技術與市售檢測儀量測比較,結果經統計分析後知:兩植體之側向頻率高於軸向,未塗佈1號植體於第24週量測之軸向頻率比第16週高,已塗佈之2號植體側向頻率高於1號,具顯著差異,證明本技術檢測值可反映骨整合情況,且表面處理可促進其發展;另1號側向/2號側軸向於兩週量測頻率比較、兩植體軸向頻率比較與第24週ISQ值差異不明顯處,需規劃詳細動物實驗探討確認。因此,本研究建立之非接觸式量測技術,可有效評估體外骨缺損,亦能初步檢測體內骨整合,並改善現存技術接觸式激振和質量負載效應影響,後續將改善相關量測問題,搭配體內/外測試驗證,期能使該技術完備,協助醫師術後診斷及病患即時監測,降低植牙手術失敗風險。
摘要(英) Several methods have been developed and applied to assess the interfacial situations after the dental implantation, but so far they are not able to provide the diagnostic standard for determining the success and the failure of the surgery. This study, establishing a newly noncontact resonance frequency (RF) detection technique, uses the procedure to perform bone defect and osseointegration evaluation in the implant-bone interface. Based on our method, the implant-bone structure was excited by the acoustic energy of a loudspeaker, and its vibration response was acquired with a capacitance displacement sensor. The spectral analysis was used to characterize the first peak RF value. Two types of in vitro defect models, single vertical dehiscence (SVD) and opposite vertical dehiscence (OVD), were 4 and 8 mm in depth and made for verification. The measurements of RF with each model being clamped in four heights (9, 10, 11, and 12 mm) were performed in their defect directions (0°, 45° and 90°), respectively. Afterward the finite element (FE) modal analysis was applied to determine mode shapes as well as their corresponding RFs of these bone defect models and compared simulated results with measuring RFs. Besides, two implants (1: coating, 2: non coating) were embedded in the left tibia of one rabbit. This noncontact method was used to perform the preliminary osseointegration detection and measured the RFs of the tibia in the lateral as well as the axial direction. Each in vitro and in vivo model was also checked by using an Osstell Mentor. The obtained two parameters, RF and ISQ (Implant Stability Quotient), were tested statistically by the ANOVA and the linear regression analysis for comparisons. In the in vitro test, the RFs and the ISQs of all defect models in four clamp heights decrease significantly (p < 0.05) along with the increase of the defect quantity; and the two parameters of each imperfection increase significantly (p < 0.05) when the clamp height increases. The RFs of SVD models linearly correlate with their corresponding ISQs in four clamp heights and two measuring orientations (0° and 90°). The numerical RF variations also present the same trend along with the changing of the defect structure and the surrounding boundary condition. Additionally, in the in vivo test, the RFs of two implants in the lateral direction are higher than that in the axial direction (p < 0.05). The axial RFs of the implant 1 in the 24 week are higher than that in the 16 week, and the lateral RFs of the implant 2 are higher than those of the implant 1 (p < 0.05). Other unapparent differences in some RF and ISQ detection need detailed animal experiments to confirm. Therefore, our technique can estimate availably the interfacial imperfection/osseointegration and is feasible for the assessment of the postoperative healing around a dental implant.
關鍵字(中) ★ 牙科植體
★ 骨缺損
★ 骨整合
★ 非接觸式檢測
★ 共振頻率分析
★ 有限元素分析
★ 動物實驗
關鍵字(英) ★ Dental implant
★ Bone defect
★ Osseointegration
★ Noncontact detection
★ Resonance frequency analysis
★ Finite element analysis
★ Animal experiment
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 vii
圖目錄 ix
表目錄 xii
一、緒論 1
1-1 研究背景與動機 1
1-1-1 植體術後骨整合 2
1-1-2 植體術後穩固度 3
1-1-3 植體術後骨缺損 3
1-2 文獻回顧 8
1-2-1 前臨床生物力學評估 8
1-2-2 臨床生物力學評估 9
1-2-3 體外與體內實驗回顧 11
1-2-4 植體數值分析回顧 15
1-3 研究範疇 17
二、牙科植體-齒槽骨結構振動與數值分析 18
2-1 植體-齒槽骨結構振動行為 18
2-2 有限元素模態分析設定與求解 24
三、骨缺損/骨整合評估之實驗量測與數值模擬 26
3-1 骨缺損/骨整合實驗模型設計規劃 26
3-1-1 體外骨缺損模型 26
3-1-2 體內骨整合模型 28
3-2 非接觸聲能激振式量測方法與架構 29
3-2-1 體外骨缺損實驗 29
3-2-2 體內骨整合實驗 30
3-3 體外骨缺損有限元素模型建構與分析 31
四、骨缺損/骨整合評估之實驗分析結果與討論 34
4-1 體外骨缺損檢測 34
4-1-1 非接觸式聲能激振-位移響應量測結果 34
4-1-2 有限元素模態分析結果 45
4-2 體內骨整合檢測 55
五、植牙術後骨缺損/骨整合評估技術結論與未來工作 58
參考文獻 59
附錄 68
專有名詞 76
研究成果 79
個人簡歷 81
圖目錄
圖1:術後牙科植體-齒槽骨結構說明 1
圖2:植體界面骨整合說明 2
圖3:骨缺損之臨床分類 4
圖4:鄰近植體之骨缺損分類 5
圖5:Class I缺損 7
圖6:Class II缺損與人體自然發生之植體周圍炎骨缺損照片與X光片 7
圖7:口內植體骨整合生物力學評估方式示意圖 10
圖8:體內測試之慣性頻率響應函數 22
圖9:Yajima動態模型 23
圖10:頻率響應特性 23
圖11:非接觸聲能激振式植牙術後骨缺損/骨整合評估技術建構流程 26
圖12:人體左下顎解剖方向 27
圖13:各類體外骨缺損模型 28
圖14:白兔左脛骨植入手術 29
圖15:體外骨缺損實驗之非接觸聲能激振式量測架構 29
圖16:體內骨整合實驗之非接觸聲能激振式量測架構 31
圖17:體外骨缺損實體模型 31
圖18:各類骨缺損型態之實體模型(上視圖) 32
圖19:(a)體外骨缺損網格模型與(b)邊界條件設定(以OI型態為例) 33
圖20:0度方向於各固定高度之單側缺損型態量測頻率長條圖 36
圖21:0度方向於各固定高度之對側缺損型態量測頻率長條圖 36
圖22:45度方向於各固定高度之單側缺損型態量測頻率長條圖 36
圖23:45度方向於各固定高度之對側缺損型態量測頻率長條圖 37
圖24:90度方向於各固定高度之單側缺損型態量測頻率長條圖 37
圖25:90度方向於各固定高度之對側缺損型態量測頻率長條圖 37
圖26:0度方向於各固定高度之單側缺損型態量測ISQ長條圖 38
圖27:90度方向於各固定高度之單側缺損型態量測ISQ長條圖 39
圖28:單/對側缺損變化之RF平均減少率長條圖(0度方向) 41
圖29:單/對側缺損變化之RF平均減少率長條圖(45度方向) 41
圖30:單/對側缺損變化之RF平均減少率長條圖(90度方向) 41
圖31:單側缺損變化之RF與ISQ平均減少率長條圖(0度方向) 42
圖32:單側缺損變化之RF與ISQ平均減少率長條圖(90度方向) 43
圖33:網格收斂性曲線(以0度方向、9 mm固定高度之OI型態進行分析) 46
圖34:0度方向自由側之各缺損模態振型 47
圖35:45度方向自由側之各缺損模態振型 48
圖36:45度方向固定側之各缺損模態振型 48
圖37:90度方向固定側之各缺損模態振型 48
圖38:0度方向自由側於各固定高度之單側缺損型態模擬頻率長條圖 50
圖39:45度方向自由側於各固定高度之單側缺損型態模擬頻率長條圖 50
圖40:45度方向固定側於各固定高度之單側缺損型態模擬頻率長條圖 51
圖41:90度方向固定側於各固定高度之單側缺損型態模擬頻率長條圖 51
圖42:0度方向自由側於各固定高度之對側缺損型態模擬頻率長條圖 51
圖43:45度方向自由側於各固定高度之對側缺損型態模擬頻率長條圖 52
圖44:45度方向固定側於各固定高度之對側缺損型態模擬頻率長條圖 52
圖45:90度方向固定側於各固定高度之對側缺損型態模擬頻率長條圖 52
圖46:白兔脛骨整合之RF量測結果 54
圖47:白兔脛骨整合之ISQ量測結果 55
圖48:植體嵌入白兔左脛骨手術照片 57
圖49:單側0°方向OI型態之響應訊號頻譜(1號模型,9 mm固定高度) 68
圖50:單側0°方向SVD4型態之響應訊號頻譜(1號模型,9 mm固定高度) 68
圖51:單側0°方向SVD8型態之響應訊號頻譜(1號模型,9 mm固定高度) 69
圖52:單側0°方向CD型態之響應訊號頻譜(1號模型,9 mm固定高度) 69
圖53:對側0°方向OI型態之響應訊號頻譜(3號模型,9 mm固定高度) 70
圖54:對側0°方向OVD4型態之響應訊號頻譜(3號模型,9 mm固定高度) 70
圖55:對側0°方向OVD8型態之響應訊號頻譜(3號模型,9 mm固定高度) 71
圖56:對側0°方向CD型態之響應訊號頻譜(3號模型,9 mm固定高度) 71
圖57:單側90°方向OI型態之響應訊號頻譜(4號模型,9 mm固定高度) 72
圖58:單側90°方向SVD4型態之響應訊號頻譜(4號模型,9 mm固定高度) 72
圖59:單側90°方向SVD8型態之響應訊號頻譜(4號模型,9 mm固定高度) 73
圖60:單側90°方向CD型態之響應訊號頻譜(4號模型,9 mm固定高度) 73
圖61:對側90°方向OI型態之響應訊號頻譜(6號模型,9 mm固定高度) 74
圖62:對側90°方向OVD4型態之響應訊號頻譜(6號模型,9 mm固定高度) 74
圖63:對側90°方向OVD8型態之響應訊號頻譜(6號模型,9 mm固定高度) 75
圖64:對側90°方向CD型態之響應訊號頻譜(6號模型,9 mm固定高度) 75
表目錄
表1:牙科植體骨整合之生物力學評估方式 10
表2:體外骨缺損實體模型之材料係數 33
表3:各缺損方向與固定高度之單側缺損型態量測頻率 35
表4:各缺損方向與固定高度之對側缺損型態量測頻率 35
表5:0與90度缺損方向於各固定高度之單側缺損型態量測ISQ值 38
表6:各缺損方向與固定高度之單側缺損變化RF減少率 40
表7:各缺損方向與固定高度之對側缺損變化RF減少率 40
表8:0與90度缺損方向於各固定高度之單側缺損變化ISQ減少率 42
表9:各固定高度之單側缺損RF及ISQ值線性迴歸分析結果(0與90度方向) 43
表10:各缺損方向與固定高度之單側缺損型態節點/元素數量 46
表11:各缺損方向與固定高度之對側缺損型態節點/元素數量 47
表12:各缺損方向與固定高度之單側缺損模態振型對應共振頻率 49
表13:各缺損方向與固定高度之對側缺損模態振型對應共振頻率 49
表14:各缺損方向與固定高度之單側缺損實驗與模擬頻率值誤差 53
表15:各缺損方向與固定高度之對側缺損實驗與模擬頻率值誤差 54
參考文獻 [1] Philip, W., Brien, R. L., & William, E. L. (Eds.), Osseointegration in dentistry: An Introduction., Quintessence Publishing Co. Inc., Chicago, 1994.
[2] Brånemark, P-I., Zarb, G. A., & Albrektsson, T. (Eds.), Tissue-integrated prostheses: Osseointegration in clinical dentistry., Quintessence Publishing Co. Inc., Chicago, 1985.
[3] Atsumi, M., Park, S. H. and Wang, H. L., “Methods used to assess implants stability: Current status,” The International Journal of Oral & Maxillofacial Implants, Vol. 22, No. 5, pp. 743-754 (2007).
[4] Javed, F. and Romanos, G. E., “The role of primary stability for successful immediate loading of dental implant: A literature review,” Journal of Dentistry, Vol. 38, No. 8, pp. 612-620 (2010).
[5] Araújo, M. G., Sukekava, F., Wennström, J. and Lindhe, J., “Ridge alterations following implant placement in fresh extraction sockets: An experimental study in the dog,” Journal of Clinical Periodontology, Vol. 32, No. 6, pp. 645-652 (2005).
[6] Huang, H. L., Chang, Y. Y., Lin, D. J., Li, Y. F., Chen, K. T. and Hsu, J. T., “Initial stability and bone strain evaluation of the immediately loaded dental implant: An in vitro model study,” Clinical Oral Implants Research, Vol. 22, No. 7, pp. 691-698 (2011).
[7] Berglundh, T., Abrahamsson, I., Lang, N. P. and Lindhe, J., “De novo alveolar bone formation adjacent to endosseous implants: A model study in the dog,” Clinical Oral Implants Research, Vol. 14, No. 3, pp. 251-262 (2003).
[8] Chang, P-C., Lang, N. P. and Giannobile, W. V., “Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants,” Clinical Oral Implants Research, Vol. 21, No. 1, pp. 1-12 (2010).
[9] Carlo, T. and Stefano, P-B., “Clinical classification of bone defects concerning the placement of dental implants,” The International Journal of Periodontics & Restorative Dentistry, Vol. 23, No. 2, pp. 147-155 (2003).
[10] Leonardo, V. B., “A proposal for the classification of bony defects adjacent to dental implants,” The International Journal of Periodontics & Restorative Dentistry, Vol. 24, No. 3, pp. 264-271 (2004).
[11] Schwarz, F., Herten, M., Sager, M., Bieling, K., Sculean, A. and Becker, J., “Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs,” Clinical Oral Implants Research, Vol. 18, No. 2, pp. 161-170 (2007).
[12] Johansson, C. B., Han, C. H., Wennerberg, A. and Albrektsson, T., “A quantitative comparison of machined commercially pure titanium and titanium-aluminum-vanadium implants in rabbit bone,” The International Journal of Oral & Maxillofacial Implants, Vol. 13, No. 3, pp. 315-321 (1998).
[13] Berzins, A., Shah, B., Weinans, H. and Summer, D. R., “Nondestructive measurements of implant-bone interface shear modulus and effects of implant geometry in pull-out tests,” Journal of Biomedical Materials Research Part A, Vol. 34, No. 3, pp. 337-340 (1997).
[14] Kitsugi, T., Nakamura, T., Oka, M., Yan, W. Q., Goto, T., Shibuya, T., Kokubo, T. and Miyaji, S., “Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3),” Journal of Biomedical Materials Research Part A, Vol. 32, No. 2, pp. 149-156 (1996).
[15] Brånemark, R., Ohrnell, L. O., Skalak, R., Carlsson, L. and Brånemark, P-I., “Biomechanical characterization of osseointegration: An experimental in vivo investigation in the beagle dog,” Journal of Orthopaedic Research, Vol. 16, No. 1, pp. 61-69 (1998).
[16] Brunski, J. B., Puleo, D. A. and Nanci, A., “Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments,” The International Journal of Oral & Maxillofacial Implants, Vol. 15, No. 1, pp. 15-46 (2000).
[17] Meredith, N., Shagaldi, F., Alleyne, D., Sennerby, L. and Cawley, P., “The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia,” Clinical Oral Implants Research, Vol. 8, No. 3, pp. 234-243 (1997).
[18] Friberg, B., Sennerby, L., Roos, J., Johansson, P., Strid, C. G. and Lekholm, U., “Evaluation of bone density using cutting resistance measurements and microradiography: An in vitro study in pig ribs,” Clinical Oral Implants Research, Vol. 6, No. 3, pp. 164-171 (1995).
[19] Ueda, M., Matsuki, M., Jacobsson, M. and Tjellström, A., “Relationship between insertion torque and removal torque analyzed in fresh temporal bone,” The International Journal of Oral & Maxillofacial Implants, Vol. 6, No. 4, pp. 442-447 (1991).
[20] O’Sullivan, D., Sennerby, L. and Meredith, N., “Measurements comparing the initial stability of five designs of dental implants: A human cadaver study,” Clinical Implant Dentistry and Related Research, Vol. 2, No. 2, pp. 85-92 (2000).
[21] Molly, L., “Bone density and primary stability in implant therapy,” Clinical Oral Implants Research, Vol. 17, No. S2, pp. 124-135 (2006).
[22] Aparicio, C., Lang, N. P. and Rangert, B., “Validity and clinical significance of biomechanical testing of implant/bone interface,” Clinical Oral Implants Research, Vol. 17, No. S2, pp. 2-7 (2006).
[23] Schulte, W. and Lukas, D., “Periotest to monitor osseointegration and to check the occlusion in oral implantology,” Journal of Oral Implantology, Vol. 19, No. 1, pp.23-32 (1993).
[24] Olivé, J. and Aparicio, C., “Periotest method as a measure of osseointegrated oral implant stability,” The International Journal of Oral & Maxillofacial Implants, Vol. 5, No. 4, pp. 390-400 (1990).
[25] Schulte, W. and Lukas, D., “The Periotest method,” International Dental Journal, Vol. 42, No. 6, pp. 433-440 (1992).
[26] Meredith, N., Alleyne, D. and Cawley. P., “Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis,” Clinical Oral Implants Research, Vol. 7, No. 3, pp. 261-267 (1996).
[27] Meredith, N., “A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants,” Critical Reviews in Biomedical Engineering, Vol. 26, No. 4, pp. 275-291 (1998).
[28] Sennerby, L. and Meredith, N., “Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications,” Periodontology 2000, Vol. 47, No. 1, pp. 51-66 (2008).
[29] Kay, M. W., Roe, S. C., Stikeleather, L. F., Mahmoud, A. and Abrams, C. F. Jr., “Axial vibration of threaded external fixation pins: Detection of pin loosening,” Annals of Biomedical Engineering, Vol. 26, No. 3, pp. 361-368 (1998).
[30] Huang, H. M., Lee, S. Y., Yeh, C. Y. and Lin, C. T., “Resonance frequency assessment of dental implant stability with various bone qualities: A numerical approach,” Clinical Oral Implants Research, Vol. 13, No. 1, pp. 65-74 (2002).
[31] Huang, H. M., Chiu, C. L., Yeh, C. Y. and Lee, S. Y., “Factors influencing the resonance frequency of dental implants,” Journal of Oral and Maxillofacial Surgery, Vol. 61, No. 10, pp. 1184-1188 (2003).
[32] Huang, H. M., Chiu, C. L., Yeh, C. Y., Lin, C. T., Lin, L. H. and Lee, S. Y., “Early detection of implant healing process using resonance frequency analysis,” Clinical Oral Implants Research, Vol. 14, No. 4, pp. 437-443 (2003).
[33] Huang, H. M., Cheng, K. Y., Lin, C. T., Huang, W. J., Yao, W. C., Cheng, P. Y. and Lee, S. Y., “Examination of a novel designed device used for dental implants stability detection - An animal study,” Journal of Medical and Biological Engineering, Vol. 24, No. 3, pp. 115-162 (2004).
[34] Huang, H. M., Cheng, K. Y., Chen, C. F., Ou, K. L., Lin, C. T. and Lee, S. Y., “Design of a stability-detecting device for dental implants,” Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, Vol. 219, No. 3, pp. 203-211 (2005).
[35] Chang, W. J., Lee, S. Y., Wu, C. C., Lin, C. T., Abiko, Y., Yamamichi, N. and Huang, H. M., “A newly designed resonance frequency analysis device for dental implant stability detection,” Dental Materials Journal, Vol. 26, No. 5, pp. 665-671 (2007).
[36] Yamane, M., Yamaoka, M., Hayashi, M., Furutoyo, I., Komori, N. and Ogiso, B., “Measuring tooth mobility with a no-contact vibration device,” Journal of Periodontal Research, Vol. 43, No. 1, pp.84-89 (2008).
[37] Hayashi, M., Kobayashi, C., Ogata, H., Yamaoka, M. and Ogiso, B., “A no-contact vibration device for measuring implant stability,” Clinical Oral Implants Research, Vol. 21, No. 9, pp. 931-936 (2010).
[38] Kim, D. S., Lee, W. J., Choi, S. C., Lee, S. S., Heo, M. S., Huh, K. H., Kim, T. I., Lee, I. B., Han, J. H. and Yi, W. J., “A new method for the evaluation of dental implant stability using an inductive sensor,” Medical Engineering & Physics, Vol. 34, No. 9, pp. 1247-1252 (2012).
[39] Ito, Y., Sato, D., Yoneda, S., Ito, D., Kondo, H. and Kasugai, S., “Relevance of resonance frequency analysis to evaluate dental implant stability: Simulation and histomorphometrical animal experiments,” Clinical Oral Implants Research, Vol. 19, No. 1, pp. 9-14 (2008).
[40] Tözüm, T. F., Turkyilmaz, I. and McGlumphy, E. A., “Relationship between dental implant stability determined by resonance frequency analysis measurements and peri-implant vertical defects: An in vitro study,” Journal of Oral Rehabilitation, Vol. 35, No. 10, pp. 739-744 (2008).
[41] Hsu, J. T., Fuh, L. J., Tu, M. G., Li, Y. F., Chen, K. T. and Huang, H. L., “The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models,” Clinical Implant Dentistry and Related Research, Vol. 15, No. 2, pp. 251-261 (2013).
[42] Toyoshima, T., Wagner, W., Klein, M. O., Stender, E., Wieland, M. and Al-Nawas, B., “Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model,” Clinical Implant Dentistry and Related Research, Vol. 13, No. 1, pp. 71-78 (2011).
[43] Pattijn, V., Jaecques, S. V. N., De Smet, E., Muraru, L., Van Lierde, C., Van der Perre, G., Naret, I. and Vander Sloten, J., ”Resonance frequency analysis of implants in the guinea pig model: Influence of boundary conditions and orientation of the transducer,” Medical Engineering & Physics, Vol. 29, No. 2, pp. 182-190 (2007).
[44] Xiao, J. R., Li, Y. Q., Guan, S. M., Kong, L., Liu, B. and Li, D., “Effects of lateral cortical anchorage on the primary stability of implants subjected to controlled loads: An in vitro study,” British Journal of Oral and Maxillofacial Surgery, Vol. 50, No. 2, pp. 161-165 (2012).
[45] Dilek, O., Tezulas, E. and Dincel, M., “Required minimum primary stability and torque values for immediate loading of mini dental implants: An experimental study in nonviable bovine femoral bone,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol. 105, No. 2, pp. e20-e27 (2008).
[46] Schouten, C., Meijer, G. J., van den Beucken, J. J. J. P., Spauwen, P. H. M. and Jansen, J. A., “A novel implantation model for evaluation of bone healing response to dental implants: The goat iliac crest,” Clinical Oral Implants Research, Vol. 21, No. 4, pp. 414-423 (2010).
[47] Turkyilmaz, I., Sennerby, L., Yilmaz, B., Bilecenoglu, B. and Ozbek, E. N., “Influence of defect depth on resonance frequency analysis and insertion torque values for implants placed in fresh extraction sockets: A human cadaver study,” Clinical Implant Dentistry and Related Research, Vol. 11, No. 1, pp. 52-58 (2009).
[48] Tözüm, T. F., Bal, B. T., Turkyilmaz, I., Gülay, G. and Tulunoglu, I., “Which device is more accurate to determine the stability/mobility of dental implants? A human cadaver study,” Journal of Oral Rehabilitation, Vol. 37, No. 3, pp. 217-224 (2010).
[49] Çehreli, M. C., Kökat, A. M., Cömert, A., Akkocaoğlu, M., Tekdemir, I. and Akça, K., “Implant stability and bone density: Assessment of correlation in fresh cadavers using conventional and osteotome implant sockets,” Clinical Oral Implants Research, Vol. 20, No. 10, pp. 1163-1169 (2009).
[50] Akça, K., Kökat, A. M., Cömert, A., Akkocaoğlu, M., Tekdemir, I. and Çehreli, M. C., “Torque-fitting and resonance frequency analyses of implants in conventional sockets versus controlled bone defects in vitro,” International Journal of Oral & Maxillofacial Surgery, Vol. 39, No. 2, pp. 169-173 (2010).
[51] De Smet, E., Jaecques, S., Vandamme, K., Vander Sloten, J. and Naert, I., “Positive effect of early loading on implant stability in the bi-cortical guinea-pig model,” Clinical Oral Implants Research, Vol. 16, No. 4, pp. 402-407 (2005).
[52] Valderrama, P. Oates, T. W., Jones, A. A., Simpson, J., Schoolfield, J. D. and Cochran, D. L., “Evaluation of two different resonance frequency devices to detect implant stability: A clinical trial,” Journal of Periodontology, Vol. 78, No. 2, pp. 262-272 (2007).
[53] Geng, J. P., Tan, K. B. C. and Liu, G. R., “Application of finite element analysis in implant dentistry: A review of the literature,” The Journal of Prosthetic Dentistry, Vol. 85, No. 6, pp. 585-598 (2001).
[54] Van Staden, R. C., Guan, H. and Loo, Y. C., “Application of the finite element method in dental implant research,” Computer Methods in Biomechanics and Biomedical Engineering, Vol. 9, No. 4, pp. 257-270 (2006).
[55] Ladd, A. J. C. and Kinney, J. H., “Numerical errors and uncertainties in finite-element modeling of trabecular bone,” Journal of Biomechanics, Vol. 31, No. 10, pp. 941-945 (1998).
[56] Pattijn, V., Van Lierde, C., Van der Perre, G., Naert, I. and Vander Sloten, J., “The resonance frequencies and mode shapes of dental implants: Rigid body behaviour versus bending behaviour. A numerical approach,” Journal of Biomechanics, Vol. 39, No. 5, pp. 939-947 (2006).
[57] Capek, L., Simunek, A., Slezak, R. and Dzan, L., “Influence of the orientation of the Osstell® transducer during measurement of dental implant stability using resonance frequency analysis: A numerical approach,” Medical Engineering & Physics, Vol. 31, No. 7, pp. 764-769 (2009).
[58] Natali, A. N., Pavan, P. G., Schileo, E. and Williams, K. R., “A numerical approach to resonance frequency analysis for investigation of oral implant osseointegration,” Journal of Oral Rehabilitation, Vol. 33, No. 9, pp. 674-681 (2006).
[59] Wang, K., Li, D. H., Guo, J. F., Liu, B. L. and Shi, S. Q., “Effects of buccal bi-cortical anchorages on primary stability of dental implants: A numerical approach of natural frequency analysis,” Journal of Oral Rehabilitation, Vol. 36, No. 4, pp. 284-291 (2009).
[60] Cawley, P. and Pettersson, A., “Method and arrangement relating to testing objects,” United States Patent, Patent No.: US 8,391,958 B2 (2013).
[61] Huang, H. M., Pan, L. C., Lee, S. Y., Chiu, C. L., Fan, K. H. and Ho, K. N., “Assessing the implant/bone interface by using natural frequency analysis,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol. 90, No. 3, pp. 285-291 (2000).
[62] Yajima, T., “Measurement of mechanical impedance of the human tooth (quantitative measurements of the periodontal viscosity and elasticity relating to tooth mobility),” Kōkūbyō Gakkai Zasshi. The Journal of the Stomatological Society, Japan, Vol. 38, No. 4, pp. 556-573 (1971).
[63] Lee, H. H., Finite element simulations with ANSYS Workbench 12: Theory-applications-case studies., Gotop Information Inc., Taipei, 2010.
[64] SWBONES®, Custom orthopedic and medical models for training., Pacific Research Laboratories, Inc., USA, 2012.
[65] Vignoletti, F. and Abrahamsson, I., “Quality of reporting of experimental research in implant dentistry. Critical aspects in design, outcome assessment and model validation,” Journal of Clinical Periodontology, Vol. 39, Suppl. 12, pp. 6-27 (2012).
[66] Stadlinger, B., Pourmand, P., Locher, M. C. and Schulz, M. C., “Systematic review of animal models for the study of implant integration, assessing the influence of material, surface and design,” Journal of Clinical Periodontology, Vol. 39, Suppl. 12, pp. 28-36 (2012).
指導教授 潘敏俊(Min-chun Pan) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明