博碩士論文 953403030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.234.255.5
姓名 呂志賢(Jyh-Shyan Leu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超大尺寸之塑膠板片熱成型研製
(Thermoforming Process Unprecedentedly Applied to Very Large Size Plastics Plate)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究有三部分 (A) ZK60鎂合金晶粒細化之超塑延展性研究 (B) A6061金屬基複合材料運用輥軋和T6處理的組合於氧化鋁強化粒子之效應 (C)超大尺寸之塑膠板片熱成型研製應用。
超塑性鎂合金機械性質採用簡單輥軋製程加上退火處理來細化鎂合金ZK60的晶粒尺寸。這一目標得到有效實現並獲得晶粒細至3.7 μm。這樣的試樣展現出642%的伸長率和其最終斷裂面顯示出顆粒間之分離與顯著晶粒成長。此外,測試樣品的幾何形狀和拉伸試驗軸線相對於超塑成型(Superplastic Forming)之延展性及輥軋方向的影響進行研究。
鋁基複合材料機械性質,Al-Si系合金,具有這樣優異的特性如低重量,低的熱膨脹係數,和高耐磨性,是用於汽車和航空工業的理想材料。然而,它們的應用受到阻礙的主要矽顆粒中的Al-Si系合金的粗化。在這項研究中,對鋁基複合材料的輥軋和T6處理組合效果進行了研究及對鋁基金屬基複合材料的硬度進行了總結。經T6熱處理及輥軋組合,在所有的情況下,硬度提高。此外,鋁基複合材料用不同量的增強Al2O3顆粒中,也討論了磨耗測試。該結果表明,Al2O3顆粒的增加降低了磨耗率。可能的強化機制和環境溫度的影響進行了討論。這種改進的耐磨耗性是由於矽,在高百分比的輥軋下減小粒徑而細化。
以往大量生產液晶電視機,後殼零件都是採用塑膠射出成型(Injection molding)為主,而開發超大尺寸成品,因射出成型模具費用高昂(動輒數十萬美金),所以採用另一種傳統的塑膠成型法-熱成型(Thermoforming),生產超大型、量少產品,是值得考慮的,本論文主要是以電腦輔助分析模擬對照熱成型實作厚度分布,所使用之材料為ABS塑膠。而材料在高溫環境中模具的拔模角度與模具壁的摩擦效應,將直接影響材料的變型趨勢,為此本論文使用有限元素套裝軟體ANSYS/LS-DYNA結合實作,分析塑膠板材之熱成型製程,並探討液晶電視機殼最終厚度分布之影響。ANSYS/LS-DYNA有限元素軟體能提供模具設計人員,在零件實際成型之前先做周密的模擬分析,並據以修改模具之外型輪廓,俾利減少測試次數及縮短產品開發時程以便降低成本。
摘要(英) This thesis has three parts (A)ZK60 magnesium alloy grain refinement of superplastic ductility study (B) A6061 metal matrix composites and combination treatment using rolling -T6 strengthening effect of alumina particles (C) Plastic sheet studies of thermoforming applications.
Mechanical properties of superplastic magnesium alloy using a simple rolling process plus annealing to refine the grain size of magnesium alloy ZK60. This goal is effectively achieved, obtaining grains as fine as 3.7μm. Such a specimen shows an elongation of 642% and its ultimate fracture surface exhibits inter-granular separation and significant grain growth. Additionally, the effects of the specimen’s geometry and tensile test axis with respect to rolling direction on superplastic elongation is studied, which has not been done before.
Mechanical properties of aluminum matrix composites, Al-Si alloys, with such excellent properties as low weight, low thermal expansion coefficient, and high wear-resistance, are ideal materials for the automobile and aerospace industries. However, their applications have been hampered by the coarsening of the primary-Si particles in Al-Si alloys. In this study, the rolling-and-T6- treatments effect on A6061/Al2O3 metal-matrix composites is investigated. The A6061/Al2O3 metal-matrix composites with different amounts of reinforcing Al2O3 particles are examined in the aspects of wear resistance and hardness. Upon the T6 treatment, the hardness is enhanced in all cases and is summarized. The results suggest that the increase of Al2O3 particles reduce the wear rate. The possible reinforce mechanisms and the environmental -temperature effects are discussed. This improvement in wear resistance is due to the particle size refinement of silicon at a high percentage-roll-reduction.
Mass production of LCD TVs in the past, back cover part are using plastic injection molding mainly due to the finished product and the development of very large-size injection molding mold costly (tens of thousands of dollars), so using another conventional plastic molding - thermoforming , the production of very large, less product, is worthy of consideration, this thesis is based on computer-assisted analysis of the control thermoforming Implementing thickness distribution of the materials used for ABS plastic. The effects of the opening angle of friction materials in high temperature environments with the mold wall mold, will directly affect the trend variant materials, for use in this paper the finite element software package ANSYS / LS-DYNA binding experiments, analysis of the plastic sheet plastic molding process and to investigate the effect of the LCD TV cabinet thickness distribution of the final. ANSYS / LS-DYNA finite element software can provide mold design, before the actual molding parts do first thorough simulation analysis, and according to modify the shape of the contour of the mold, to serve and benefit to reduce the number of tests in order to shorten the product development process while reducing costs.
關鍵字(中) ★ 鎂合金(ZK60)
★ 伸長率
★ 輥軋製程
★ 晶粒細化
★ 熱成型
★ 有限元素分析
關鍵字(英) ★ ZK60
★ Elongation
★ Rolling
★ Fine grains
★ Thermoforming
★ Finite element analysis
論文目次 摘 要 i
Abstract iii
誌 謝 v
目 錄 vii
圖目錄 xii
表目錄 xxii
符號說明 xxiii
第一章: 緒論 1
1-1 前言 1
1-2 塑膠熱成型概論 4
1-2-1 熱成型製程回顧 6
1-2-2 真空熱成型加工的優缺點 8
1-3塑膠熱成型文獻回顧 12
1-4 研究動機 15
1-4-1產品開發週期 16
1-4-2模具成本比較 17
1-4-3總成本比較 17
1-4-4市場與應用 18
1-5 研究方法及步驟 19
第二章: ZK60鎂合金晶粒細化之超塑延展性研究 34
2-1 引言 34
2-2實驗步驟 35
2-3結果與討論 35
2-3-1微細構造發展,對細化晶粒10μm以下大小 35
2-3-2超塑延伸率分析 36
2-3-3超塑性與塑性的快速流動 38
2-4結論 38
第三章: A6061金屬基複合材料運用輥軋和T6處理的組合於Al2O3強化粒子之效應 49
3-1引言 49
3-2. 實驗 50
3-2-1材料 50
3-2-2微觀結構表徵 51
3-2-3耐磨性能和降伏強度測試 52
3-3結果與討論 52
3-3-1結構表徵 52
3-3-2耐磨試驗分析 53
3-3-3鋁6061鋁基複合材料受到環境溫度的影響 56
3-4結論 56
第四章: 塑膠板片熱成型基本原理及實驗模擬設備 64
4-1 基本原理 64
4-1-1 塑膠板片熱成型原理 64
4-1-2 依模具型式區分成型工藝 64
4-1-3 熱成型有效成型壓力 69
4-1-4 熱成型成型面積、切入面積、夾持邊緣 70
4-1-5 熱成型廢料(邊料)面積和廢料比率 71
4-1-6 熱成型排氣面、排氣孔、排氣槽、槽口 72
4-1-7 熱成型拔模角 72
4-1-8 熱成型之成型比和牽引比 73
4-1-9 熱成型壁厚計算、熱成型成型製件 74
4-1-10熱成型製件的收縮和變型 75
4-1-11熱成型痕跡、冷卻痕跡、條紋、皺褶 76
4-2 實驗設備及材料 77
4-2-1 熱成型機 77
4-2-2熱成型模具: 81
4-2-3 CNC切削加工機及夾治具: 81
4-2-4雜項設備: 81
4-2-5 實作材料 82
4-3 實作步驟 82
第五章: 電視機後殼成型板片材料 105
5-1 電視機機殼材料選用 105
5-2 液晶電視機後殼熱成型成型板材製作方式 108
5-3電視機後殼熱成型成型板材厚度與製成區分 109
5-3 電視機後殼成型材料拉伸試驗 110
5-3-1實驗方法: 110
5-3-2實驗參數: 110
5-3-3實驗設備: 110
5-3-4實驗材料: 110
5-3-5實驗結果: 111
第六章: 液晶電視機後殼之熱成型電腦模擬分析與實作探討 123
6-1 超塑成型組成方程式 123
6-2 液晶電視機後殼螺絲鎖附孔部位之材料成型變化趨勢 125
6-3 壓力-時間成型曲線計算 126
6-3-1 圓錐型體壓力-時間計算理論 127
6-3-2 長型方盒壓力-時間計算理論 128
6-3-3 液晶電視機後殼螺絲鎖附孔部位之壓力-時間成型曲線計算 130
6-4 ANSYS/LS-DYNA有限元素分析軟體成型參數設定 132
6-4-1 ANSYS/LS-DYNA軟體之使用設定方式 133
6-4-2 ANSYS/LS-DYNA軟體之成型參數設定 135
6-5 液晶電視機後殼螺絲鎖附孔部位之電腦模擬與實作 139
6-5-1 液晶電視機後殼螺絲鎖附孔部位部位之檢測標準 140
6-5-2 液晶電視機後殼螺絲鎖附孔部位剖面部位之電腦模擬結果 140
6-5-3 液晶電視機後殼螺絲鎖附孔部位斷面部位之實作結果 143
6-6 全尺寸實作結果 145
6-6-1以螺絲鎖附孔區域拔模角30°,角落邊緣無圓角(R0) 146
6-6-2以螺絲鎖附孔區域拔模角10°,角落邊緣無圓角(R0) 146
6-6-3以螺絲鎖附孔區域拔模角12°,角落邊緣無圓角(R0) 146
6-6-4以螺絲鎖附孔區域拔模角12°,角落邊緣有圓角(R3) 146
6-7 實作結果討論 147
6-7-1在以螺絲鎖附孔區域拔模角30°螺絲鎖附孔區域 147
6-7-2將螺絲鎖附孔區域拔模角改成10° 147
6-7-3將螺絲鎖附孔區域拔模角改成12° 147
6-7-4將螺絲鎖附孔區域拔模角改成12°及增加邊緣圓角(R3) 148
6-8 機構測試驗證 148
6-8-1 電視應力壽命測試 : 148
6-8-2 電視震動及落下實驗: 149
6-8-3 電視早期壽命可靠度測試: 149
6-8-4 電視壁掛結構測試: 150
6-8-5 電視紙箱測試: 151
第七章: 結論 202
參考文獻 205

參考文獻 [1]. http://en.wikipedia.org/wiki/Injection_molding
[2]. 林維帥, 「熱引伸輔助超塑成形製作機翼整流罩之設計及分析」, 國立中央大學機械工程研究所碩士論文,2012.
[3]. H.Raman, G. Luckey,G. Kridli, and P.Friedman , “Development of Accurate Constitutive Models for Simulation of Superplastic Forming”.Journal of Materials Engineering and Performance,. Vol 16(3): p. 284-292 ,2007
[4]. J. L. Throne, Advances in Thermoforming,.Vol 8,Number 9,RAPRA Techology LTD. p 6-12,1997
[5]. http://www.custompartnet.com/wu/thermoforming
[6]. C.Jens, What are Tortoise Shell Rings for, eHow Contributor, 1999.
[7]. S.A.Ashter. Thermoforming of Single and Multilayer Laminates: Plastic Films Technologies ,Testing, and Applications,p.3-5,2014
[8]. S. Wang , A. Makinouchi , T. Tosa , K. Kidokoro , M. Okamoto , T. Kotaka
T. Nakagawa,“Numerical simulation of acrylonitrile- butadiene- styrene material’s vacuum forming process”. Journal of Materials Processing Technology,. Vol 91(1–3): p. 219- 225., 1999
[9]. C.O. Phillips , et al., “Finite element modelling of low temperature forming of polymer films with application in in-mould decoration”. Materials & Design, Vol 30(3): p. 537-550, 2009.
[10]. M.A. Khaleel, H.M. Zbib, and E.A. Nyberg, “Constitutive modeling of deformation and damage in superplastic materials”. International Journal of Plasticity,. Vol 17(3): p. 277-296, 2001
[11]. Y.M. Hwang, et al., “Analysis of superplastic blow-forming in a conical closed die”. International Journal of Mechanical Sciences,. Vol 40(9): p. 867-885.,1998
[12]. F.S. Jarrar, et al., “New approach to gas pressure profile prediction for high temperature AA5083 sheet forming”. Journal of Materials Processing Technology,Vol 210(6–7): p. 825-834, 2010
[13]. S. Shrivastava, and J. Tang, “Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming”. The Journal of Strain Analysis for Engineering Design,Vol 28(1): p. 31-51, 1993
[14]. H.S. Kleespies Iii, and R.H. Crawford, “Vacuum forming of compound curved surfaces with a variable geometry mold”. Journal of Manufacturing Systems, Vol 17(5): p. 325-337,1998
[15]. Y.H. Song, , et al., “3-D FEM analysis of the temperature field and the thermal stress for plastics thermalforming”. Journal of Materials Processing Technology,Vol 97(1–3): p. 35-43,2000
[16]. Y. Li, J. A. Nemes and A. A. Derdouri, “Membrane inflation of polymeric materials: Experiments and finite element simulations”. Polymer Engineering & Science,Vol 41(8): p. 1399-1412,2001
[17]. M.K . Warby, et al.,“ Finite element simulation of thermoforming processes for polymer sheets”. Mathematics and Computers in Simulation,Vol 61(3–6): p. 209-218,2003
[18]. T. Azdast, , et al., “Numerical and experimental analysis of wall thickness variation of a hemispherical PMMA sheet in thermoforming process”. The International Journal of Advanced Manufacturing Technology,Vol 64(1-4): p. 113-122, 2013
[19]. G. Marckmann, , E. Verron, and B. Peseux,“ Finite element analysis of blow molding and thermoforming using a dynamic explicit procedure”. Polymer Engineering & Science,Vol 41(3): p. 426-439,2001
[20]. G. Sala, , L. Di Landro, and D. Cassago, “A numerical and experimental approach to optimise sheet stamping technologies: polymers thermoforming”. Materials & Design,Vol 23(1): p. 21-39, 2002
[21]. W.G. Jiang, , et al., “Finite element modelling of high air pressure forming processes for polymer sheets”. Computational Mechanics, Vol 31(1-2): p. 163-172, 2003
[22]. T. R. Mcnelley, K. Oh-Ishi , A. P. Zhilyaev, S. Swaminathan, P. E.Krajewski, and E. M Taleff., “Characteristics of the transition from grain-boundary sliding to solute drag creep in superplastic AA5083”, Metallurgical and Materials Transactions A, Vol 39,p50-64, 2008
[23]. P. E. Krajewski, and A. T. Morales, “Tribological issues during quick plastic forming”, Journal of Materials Engineering and Performance,Vol 13: p700-709,2004
[24]. M. A. Kulas, P. E. Krajewski, J. R. Bradley, and E. M. Taleff, “Forming-limit diagrams for hot-forming of AA5083 aluminum sheet: continuously cast material”, Journal of Materials Engineering and Performance., , Vol 16,p 308-313,2007
[25]. A. Galiyev, and R. Kaibyshev,“ Superplasticity in a magnesium alloy subjected to isothermal rolling”, Scripta Materialia, , Vol 51: p89-93, 2004
[26]. R. B. Figueiredo, and T. G. Langdon, “The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP”, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Vol 430,p151, 2008
[27]. H.Watanabe, and T. Mukai, “Superplasticity in a ZK60 magnesium alloy at low temperatures”, Scripta Materialia,Vol 40: p477,1999.
[28]. ASTM E8M-00a, Standard test methods for Tension Testing of Metallic Materials, American Society for Testing and Materials, Philadelphia, PA, 2000.
[29]. The Boeing Company, http://www.boeing.com/
[30]. L.D. Hefti, “Commercial Airplane Applications of Superplastically Formed AA5083 Aluminum Sheet”, Journal of Materials Engineering and Performance, , Vol 16,p.136–141, 2007
[31]. 張暘青,「民航客機機翼前緣整流罩之超塑成形材料研究」, 國立中央大學機械工程研究所碩士論文,2011
[32]. K. Lu, “The Future of Metals,”Science, ,Vol 328,no. 5976,p.319-320, 2010
[33]. C.M. Friend, I. Horsfall, C.L. Burrows, Journal of Materials Science, ,Vol 26 p.225-231, 1991
[34]. S.V. Nair, J. K.Tien,R. C.Bates,”SiC-reinforced aluminium metal matri composites” , International Materials Reviews, Vol 30,p 275-290,1985,
[35]. J.K. Shang, W.K. Yu, R.O. Ritchie, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process, Vol 102,p.181-192.,1988
[36]. A.T. Alpas, J. Zhang, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, Vol 25 , p.969-983, 1994.
[37]. W.Q. Song, P. Krauklis, A.P. Mouritz, S. Bandyopadhyay, “The effect of thermal ageing on the abrasive wear behaviour of age-hardening 2014 Al/SiC and 6061 Al/SiC composites,” Wear, , Vol 185, p.125-130, 1995
[38]. B. Venkataraman, G. Sundararajan, Acta Mater.,Vol 44 ,p.451-460, 1996
[39]. S.Y. Yu, H. Ishii, K. Tohgo, Y.T. Cho, D.F. Diao, “Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite”,Wear,Vol 213, p.21-28, 1997
[40]. M.M. Benal, H.K. Shivanand, Wear,Vol 262 ,p.759-763.,2007
[41]. C.S. Ramesh, M. Safiulla, “Wear behavior of hot extruded Al6061 based composites,” Wear,Vol 263,p.629-635,2007
[42]. A.M. Al-Qutub, I. M. Allam, M. A. Abdul Samad, J. Mater. Sci., , Vol 43,p.5797-5803, 2008
[43]. K. Toyama, K. Matsuura, M. Ohno, T. Sato, and M. Nakayama, J. Jpn. Inst. Light Met.,Vol 60,p.7-11, 2010
[44]. C.C. Perng, M.C. Jeng, J.L. Doong, Journal of the Chinese Society of Mechanical Engineers,Vol 15,p.118-127.,1994
[45]. H.S. Chu, K.S. Liu, J.W. Yeh, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,Vol 31, p.2587-2596,2000
[46]. I.V. Kragelskii, Friction and Wear, Butterworths, London, p.30–59, 1965
[47]. N.P. Suh, H.C. Sin,” The genesis of friction” Wear, Vol 69,p.91-114, 1981
[48]. http://www.productiveplastics.com/twin-sheet-forming/
[49]. T.Azdast , A.Doniavi , S. R. Ahmadi ,E. Amiri , “Numerical and experimental analysis of wall thickness variation of a hemispherical PMMA sheet in thermoforming process, Int J Adv Manuf Technol ,Vol 64 ,p.113-122,2013
[50]. 呂志賢,李雄「澆口位置選擇對射出成型製程影響之研究」,2005 CAE Molding conference,二版,臺灣新竹,B21-1 ~B21-8,2005
[51]. 呂志賢,李雄「澆口數量的選擇對射出成型製程影響之研究」,2005 CAE Molding conference,二版,臺灣新竹, B16-1~B16-5,2005
[52]. Basel Polyolefi ns, permission from Polypropylene Sheet Extrusionand Thermoforming for Packaging Applications, Rotterdam, The Netherlands, 2005, 054 PP e. ©2005.
[53]. R.Verma , et al., “Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet”. Metallurgical and Materials Transactions A,. Vol 27(7): p. 1889-1898,1996
[54]. A.K. Ghosh and C.H. Hamiton, “Superplastic Forming and Diffusion Bonding”, SPF/DB workshop Taipei, p. 205-213,1990
[55]. M. Vulcan, K. Siegert, and D. Banabic, “The Influence of Pulsating Strain Rates on the Superplastic Deformation Behaviour of Al-Alloy AA5083 Investigated by Means of Cone Test”, Materials Science Forum., p. 139-144, 2004
[56]. D.Banabic, M. Vulcan, and K. Siegert, “Bulge Testing under Constant and Variable Strain Rates of Superplastic Aluminium Alloys”. CIRP Annals - Manufacturing Technology,Vol 54(1):
p. 205-208,2005
[57]. A.K. Ghosh and C.H. Hamilton, “Superplastic Forming of a Long Rectangular Box Section -- Analysis and Experiment”, Rockwell International, Thousand Oaks, California. p. 245-273, 1979,
[58]. N.Chandra,“Constitutive behavior of superplastic materials”. International Journal of Non-Linear Mechanics, , Vol 37(3): p. 461-484, 2002
指導教授 李雄(Shong Lee) 審核日期 2015-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明