博碩士論文 953403033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:13.59.136.170
姓名 丁富彬(Fu-Pin Ting)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學交流阻抗法應用於固態氧化物燃料電池系統之含銀陰極效能與質子交換膜燃料電池系統之熱壓效應研究
(Electrochemical impedance spectroscopy study on the performance of SOFC influenced by cathodes containing different Ag-contents and that of PEMFC influenced by hot-pressing)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文之主旨為利用電化學交流阻抗頻譜法(Electrochemical impedance spectroscopy, EIS),來解析(1) 氧化鑭鍶錳(Lanthanum Strontium Manganite, LSM)添加銀作為固態氧化物燃料電池(Solid oxide fuel cell, SOFC)陰極材料之電池性能特性,與(2) 質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC)之膜電極組(Membrane Electrode Assembly, MEA)熱壓程序之對於反應介面影響。研究結果摘要如下:
(1)氧化鑭鍶錳添加銀作為固態氧化物燃料電池陰極材料之研究結果:
探討銀添加量對於電池性能影響之原因。由EIS分析發現Relectrolyte值與Roxy值因釔穩定氧化鋯(Yttria stabilized zirconia,YSZ)電解質材料特性與未有促進氧離子在三相區(Triple phase boundary, TPB)傳遞效應之緣故,故兩值均未有明顯之變化。另外,隨銀添加量增加,Relectron值隨之下降,原因為銀在電極中提供更多電子傳導路徑。另一方面,隨銀添加量增加,Rchem值亦隨之下降。經化學分析電子儀(ESCA)分析原因發現在高溫與極化環境,銀由未帶電之Ag轉換至帶2價電之AgO,每一個轉換會產生2個電子,來協助三相區之氧還原反應進行。除此之外,在較低操作溫度(如700 ℃),由於銀蒸發問題減緩,可保留足夠之電子傳導路徑與電子濃度來參與三相區氧還原反應。故相較於未添加銀之電極,含銀電極在700 ℃仍可獲得較佳電池性能。總結實驗結果,發現40 wt.%銀添加量可獲得較佳電池性能。
此外,探討燒結溫度改變對於電池性能影響之原因。由掃描式電子顯微鏡/能量散佈分析儀(SEM/EDS)觀察結果,發現隨燒結溫度增加會影響銀球基底擔載LSM電極顆粒之堆疊結構。另外,隨燒結溫度增加,則銀損失速率隨之增加,代表銀逸散量增加,使得電子傳導路徑減少。另外,由ESCA分析結果,發現隨燒結溫度增加,由Ag轉換至AgO過程生成之電子濃度亦減少,因此參與三相區氧還原反應之電子隨之遞減,影響電池整體性能變化。總結實驗結果,850 ℃為銀添加之LSM電極較佳之製備燒結溫度。
(2)質子交換膜燃料電池之MEA熱壓程序對於反應介面影響之研究結果:
由EIS與I-V極化曲線分析比對發現,Rif值可作為PEMFC電池性能評估之指標參數。首先分析改變熱壓壓力之影響,發現改變熱壓壓力並未影響電極中白金觸媒(固相)與Nafion膜或Nafion溶液(液相)之兩相介面區反應(亦即電極之觸媒活性幾乎一致),僅影響電極中三相介面區反應。另外,分析改變熱壓溫度之結果,發現改變熱壓溫度,首先影響電極中之兩相介面區反應,但由於兩相介面區反應受到Nafion膜溫度效應之影響,故再間接影響到三相介面區之反應。
摘要(英) The diagnosis technology of electrochemical impedance spectroscopy (EIS) was been used in the research for investigate the electrochemical kinetics in the system of (1) Ag powders were mixing with the LSM powders as cathode electrode material of solid oxide fuel cell (SOFC) and (2) the reaction interface effect of membrane electrode assembly (MEA) in proton exchange membrane fuel cell (PEMFC) by hot-pressing process. The results and contributions of the research were been summary as following:
(1) The effect of different Ag mixing amount in the cathode electrode for cell performance was investigated by EIS. The values of Relectrolyte and Roxy were almost constant value, and they related to the electrolyte material properties of yttria stabilized zirconia (YSZ) and unenhanced the transfer property of oxygen ion in triple phase boundary (TPB) in cathode electrode. Moreover, the values of Relectron were decreased following the Ag content increasing, and it related that the Ag provided more electron conduct routes in the cathode electrode. On the other side, the values of Rchem were also decreased following the Ag content increasing, and it related that the Ag of electrically neutral was transformed to divalent of AgO on the electrode by ESCA analysis, and the transformation process produced more electrons to improving the oxygen reduction reaction (ORR) in TPB. In addition, the problem of Ag evaporation was been retard in the lower operation temperature (as 700 ℃). Therefore, electron conduct routes were retained in the cathode electrode and more electrons to improving the ORR in TPB at 700 ℃. Compared with Ag-containing and Ag-free cathode electrode that the Ag-containing cathode electrode could get better cell performance at 700℃. Finally, experiment results were summarized that the optimal Ag content was 40 wt.%.
In addition, the effect of different electrode sintering temperature for cell performance was also investigated by EIS. However, the supporting structure of LSM particles supported on Ag-spheres was changed following the sintering temperature of electrode increasing by the analysis of scanning electron microscope (SEM) / energy dispersive spectrometer (EDS). On the other side, the Ag evaporation rate was also increased following the sintering temperature of electrode increasing. Therefore, the Ag evaporation mount was increased and caused electron conduct routes decreasing in the cathode electrode. In addition, the electron concentration was reduced by Ag transformed to AgO on the electrode. Therefore, the reaction of more electrons to improving the ORR in TPB was reduced, and affected the cell performance. Finally, experiment results were summarized that the optimal sintering temperature of Ag-containing cathode electrode was 850 ℃.
(2) The value of Rif was an optimal index for the estimating of PEMFC performance by compared with EIS and I-V polarization curve. The MEA was prepared by hot-pressing process and used different hot-pressing pressure or temperature. The reaction interface effect of the MEA by hot-pressing pressure or temperature was investigated. When the hot-pressing pressure was changed, and the two phase interface reaction boundary of Pt catalyst/ Nafion membrane or Pt catalyst/ Nafion solution was not influenced. The varying of hot-pressing pressure just only influenced the triple phase interface reaction boundary. On the other side, when the hot-pressing temperature was changed, and it influenced two phase interface reaction boundary, firstly. Because two phase interface reaction boundary was influenced by temperature effect of Nafion membrane. Therefore, it indirect influenced for the reaction of triple phase interface boundary.
關鍵字(中) ★ 電化學交流阻抗頻譜
★ 固態氧化物燃料電池
★ 質子交換膜燃料電池
★ 陰極電極
★ 銀
★ 熱壓程序
關鍵字(英) ★ electrochemical impedance spectroscopy
★ solid oxide fuel cell
★ proton exchange membrane fuel cell
★ cathode electrode
★ silver(Ag)
★ hot-pressing process
論文目次 中文摘要 I
英文摘要 III
誌謝 VI
目錄 VIII
表目錄 XIII
圖目錄 XVI
符號表 XX
一、簡介 1
1.1電化學交流阻抗分析技術之發展 1
1.2 燃料電池技術之發展 2
1.3 LSM添加銀作為SOFC陰極材料之實驗動機與目的 5
1.4 PEMFC之MEA熱壓程序對反應介面影響之實驗動機與目的 7
二、基礎原理與文獻回顧 9
2.1 電化學分析技術應用於燃料電池性能分析 9
2.1.1.電化學直流極化曲線(I-V curve)分析法 9
2.1.2.電化學交流阻抗頻譜(EIS)分析法 12
2.1.3交流阻抗頻譜(EIS)分析法應用於SOFC之文獻 17
2.1.4交流阻抗頻譜(EIS)分析法應用於PEMFC之文獻 21
2.2固態氧化物燃料電池(SOFC)之發電原理與文獻 26
2.2.1 SOFC電池構造與發電原理 26
2.2.2 SOFC陰極材料添加金屬元素之發展 33
2.3質子交換膜燃料電池(PEMFC)之發電原理與文獻 38
2.3.1 PEMFC電池構造與發電原理 38
2.3.2 MEA製備技術與材料對電池性能之影響 44
三、實驗方法 60
3.1 LSM添加銀作為SOFC陰極材料之研究 60
3.1.1實驗流程與參數訂定 60
3.1.2 實驗材料 60
3.1.3 SOFC單電池製備流程 62
3.1.4實驗方法 64
3.1.4.1電化學直流極化曲線(I-V curve)分析法 65
3.1.4.2電化學交流阻抗頻譜(EIS)分析法 66
3.2 PEMFC熱壓效應之反應介面影響研究 68
3.2.1實驗流程與參數訂定 68
3.2.2 實驗材料與設備 68
3.2.3實驗方法 72
3.2.3.1電化學直流極化曲線(I-V curve)分析法 73
3.2.3.2電化學交流阻抗頻譜(EIS)分析法 73
3.2.3.3電化學循環伏安曲線(CV curve)分析法 75
3.2.3.4 電化學線性掃瞄伏安曲線(LSV curve)分析法 76
3.3 其他分析設備 76
3.3.1場發掃描式電子顯微鏡(FE- SEM)與能量散射光譜儀(EDS) 77
3.3.2熱重分析儀(TGA) 77
3.3.3差示掃描熱分析儀(DSC) 78
3.3.4化學分析電子儀(ESCA) 79
3.3.5孔隙度分析儀 80
四、結果與討論 93
4.1 LSM添加銀作為SOFC陰極材料對於電池性能影響探討 93
4.1.1不同銀添加量之電化學直流極化曲線(I-V)分析結果 93
4.1.2不同電極燒結溫度之電化學直流極化曲線(I-V)分析結果 94
4.1.3不同銀添加量之電化學交流阻抗頻譜(EIS)分析結果 96
4.1.4不同電極燒結溫度之電化學交流阻抗頻譜(EIS)分析結果 99
4.1.5 SEM/EDS微結構分析結果 101
4.1.6 TGA熱重量損失分析結果 105
4.1.7化學分析電子儀(ESCA)之銀元素分析結果 107
4.1.8 不同銀添加量對於電池性能之影響與反應機制 110
4.1.9 不同電極燒結溫度對於電池性能之影響與反應機制 115
4.2 PEMFC熱壓效應之反應介面影響探討 120
4.2.1電化學直流極化曲線(I-V)分析結果 120
4.2.2電化學交流阻抗頻譜(EIS)分析結果 122
4.2.3電化學循環伏安(CV)與線性掃描伏安(LSV)曲線分析結果 124
4.2.4 材料微結構與特性分析結果 126
4.2.5介面阻抗(Rif)與直流電化學極化曲線之關係 127
4.2.6 改變熱壓壓力對於反應介面之影響 129
4.2.7 改變熱壓溫度對於反應介面之影響 131
五、結論 169
5.1 LSM添加銀作為SOFC陰極材料對於電池性能之影響 169
5.2 PEMFC熱壓效應之反應介面影響 170
六、未來展望 173
七、參考文獻 175
八、附錄(操作參數對於發泡鎳鍍金型PEMFC電池性能影響之研究) 180
8.1研究背景與目的 180
8.2實驗方法 182
8.3 結果與討論 186
8.3.1 改變不同操作參數之I-V極化曲線結果 186
8.3.2 改變不同操作參數之交流阻抗頻譜結果 187
8.3.3 電池操作溫度改變對電池性能之影響 188
8.3.4 陰極加濕溫度改變對電池性能之影響 189
8.3.5 空氣劑量比改變對電池性能之影響 191
8.4 結論 192
8.5 參考文獻 194
九、個人著作列表 204
參考文獻 [Adler] S.B. Adler, Solid State Ionics, 135 (2000) 603.
[Asghari] S. Asghari, M. H. Shahsamandi and M. R. Ashraf Khorasani, I. J. Hydrogen Energy, 35 (2010) 9291.
[Babaei] A. Babaei, L. Zhang, E. Liu and S. P. Jiang, J Alloys and Compounds, 509 (2011) 4781.
[Bard] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Wiley-VCH (2001).
[Barfod] R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y.L. Liu and P.V. Hen- driksen, J. Electrochem. Soc, 154(4) (2007) B371.
[Barrio] A. Barrio, J. Parrondo, J. I. Lombrańa, M. Uresandi and F. Mijangos, I. J. Chemical Reactor Engineering, 6(A26) (2008) 1.
[Bevers] D. Bevers, N. Wanger and M Von Bradke, I. J. Hydrogen Energy, 23 (1998) 57.
[Blom] D. A. Blom, J. R. Dunlap, T. A. Nolan and L. F. Allard, J. Electrochem. Soc, 150(4) (2003) A414.
[Bockris] J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry Second Edition, Kluwer Academic (1998).
[Brunetto] C. Brunetto, A. Moschetto and G. Tinab, Electric Power Systems Research, 79 (2009) 17.
[Campbell] S. A. Campbell, D. P. Wilkinson, M. Davis, J. St-Pierre and M. C. Johnson, J .Electrochem. Soc, 144 (1997) 3845.
[Ciureanu 1] M. Ciureanu and H. Wang, J. Electrochem. Soc, 146(11) (1999) 4031.
[Ciureanu 2] M. Ciureanu, S.D. Mikhailenko and S. Kaliaguine, Catalysis Today, 82 (2003) 195.
[de Almeida] de Almeida SH and Kawano Y, J Therm Anal Cal, 58 (1999) 569.
[DoITPoMS] http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php?printable=1
[Easton] E. B. Easton and P. G. Pickup, Electrochimica Acta, 50 (2005) 2469.
[EG & G] EG & G Technical Services Inc. , Fuel Cell Handbook 7th Eds , U.S. Department of Energy (2004).
[Fleig] Jürgen Fleig, Annu. Rev. Mater. Res. , 33 (2003) 361.
[Fletcher] S. Fletcher, J. Electroanal Chem, 337 (1992) 127.
[fuelcelltoday] http://www.fuelcelltoday.com/analysis/industry-review/2012/the-industry-review-2012

[Galvani] L. Galvani, D. viribus electricitatis in motu musculari commentaries, Elizabeth Licht, 1953.
[Gamburzev] S. Gamburzev and A. J. Appleby, J. Power Sources, 107 (2002) 5.
[Haanappel] V.A.C. Haanappel, D. Rutenbeck, A. Mai, S. Uhlenbruck, D. Sebold, H. Wesemeyer,B. Röwekamp, C. Tropartz and F. Tietz, J Power Sources, 130 (2004) 119.
[Haile] S. M. Haile, Acta Materialia, 51 (2003) 5981.
[Hamann] C. H.Hamann, A. Hamnett and W.Vielstich, Electrochemistry, 2nd Edition, Wiley-VCH (2007).
[Harrison] K. Harrison, Chemistry, Structures & 3D Molecules @ 3Dchem.com, 2011.
[Hsu] N. Y. Hsu, S. C. Yen, K. T. Jeng and C. C. Chien, J. Power Sources, 161 (2006) 232.
[Hwang] H. J. Hwang, J. W. Moon, S. Lee and E. A. Lee, J Power Sources, 145 (2005) 243.
[Huang1] K. Huang, J. Electrochem. Soc, 151(5) (2004) A716.
[Huang2] Q. A. Huang, R. Hui, B. Wang and J. Zhang, Electrochimica Acta, 52 (2007) 8144.
[Iesenberg] A. O. Iesenberg, Fuel cell generator, US Patent No.4395468 (1983).
[Jamnik] J. Jamnik, Solid State Ionics, 157 (2003) 19.
[Jones] H. A. Jones, I. L. R and G. M. Mackay, Physical Review, 30(2) (1927) 201.
[Kato] T. Kato, K. Nozaki, A. Negishi, K. Kato, A. Momma, Y. Kaga, S. Nagata, K. Takano, T. Inagaki and H. Yoshida, et al., J. Power Sources, 133 (2004) 169.
[Kim] J. Kim, S. M. Lee, S. Srinivasan and C. E. Chamberlin, J. Electrochem. Soc, 142(8) (1995) 2670.
[Kordesch] K. Kordesch and G. Simader, Fuel Cells and Their Application,Wiley-VCH (1996).
[Lai 1] C. M. Lai, J. C. Lin, K. L. Hsueh, C. P. Hwang, K. C. Tsay, L. D. Tsai and Y. M. Peng, I. J. Hydrogen Energy, 32 (2007) 4318.
[Lai 2] C. M. Lai, J. C. Lin, F. P. Ting, S. D. Chyou and K. L. Hsueh, I. J. Hydrogen Energy, 33 (2008) 4132.
[Lee1] S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Khob and T. H. Lee, Electrochimica Acta., 43(24) (1998) 3693.
[Lee2] H. K. Lee, J. H. Park, D. Y. Kim and T. H. Lee, J. Power Sources, 131 (2004) 200.
[Lee3] J. H. Lee, J. H. Lee, W. Choia, K. W. Park, H. Y. Sunc and J. H. Oh, J. Power Sources, 195 (2010) 6001.
[Liang1] Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun and Q. Xin, J. Membrane Science, 233 (2004) 39.
[Liang2] Z.X. Liang, T.S. Zhao, C. Xu and J.B. Xu, Electrochim. Acta, 53 ( 2007) 894.
[Lin] J. C. Lin, F. P. Ting, T. Y. Lee, S. D. Chyou and C. M. Lai, I. J. Hydrogen Energy, In Press and available online 17 September 2012.
[Litster] S. Litster and G. McLean, J Power Sources, 130 (2004) 61.
[Lu] Z. G. Lu and J. H. Zhu, Electrochem. Solid-State Lett, 10(10) (2007) B179.
[Minh] N. Q. Minh, J. Am. Ceram. Soc., 76(3) (1993) 563.
[Moore] Moore RB and Martin CR, Macromolecules, 21 (1988) 1334.
[Moulder] J. F. Moulder, W. F. Stickle, P.E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Japan: ULVAC-PHI, Inc. Minnesota: Physical Electronics USA, Inc (1995).
[NETL] http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/primer/cell.html.
[Nielsen] J. Nielsen and M. Mogensen, J. Power Sources, 189(1) (2011) 74.
[O’Hayre] R. O’Hayre, S.W. Cha, W. Colella and F. B. Prinz, Fuel Cell Fundamentals, John Wiley & Son, Ltd (2009).
[Park] J. Park, J. Zou and J. Chung, J. Power Sources, 195 (2010) 4593.
[Prokhorov] A. M. Prokhorov, The Great Soviet Encyclopedia, 3rd Edition, The Gale Group, Inc.(2010).
[Passalacqua] E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti and L. Giorgi, Electrochimica Acta, 46 (2001) 799.
[Poltarzewski] Z. Poltarzewski, P. Staiti, V. Alderucci, W. Wieczorek and N. Giordano, J. Electrochem. Soc, 139 (1992) 761.
[Randles] J. E. B. Randles, Discussions of the Faraday Society, 1 (1947) 11.
[Reshetenko] T. V. Reshetenko, G. Bender, K. Bethune and R. Rocheleau, Electrochimica Acta, 69 (2012) 220.
[Sasaki] K. Sasaki, J. Tamura and M. Dokiya, Solid State Ionics, 144 (2001) 223.
[Sasikumar] G. Sasikumar, J.W. Ihm and H. Ryu, Electrochimica Acta, 50 (2004) 601.
[Simner] S. P. Simner, M. D. Anderson, J. E. Coleman and J. W. Stevenson, J Power Sources, 161 (2006) 115.
[Singhal] S.C. Singhal and K. Kendall , High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications , Elsevier Science (2004).
[Siracusano] S. Siracusano, V. Baglio, N. Briguglio, G. Brunaccini, A. Di Blasi, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci and A.S. Aricò, I. J. Hydrogen Energy, 37 (2012) 1939.
[Sluyters-Rehbach] M. Sluyters-Rehbach and J. H. Sluyter, Comprehensive Treatise of Electrochemistry, Plenum Press, New York, (1984).
[Sridhar] S. Sridhar, V. Stancovski and U. B. Pal, Solid State Ionics, 100 (1997) 17.
[Srinivasan] S. S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, J. Power Sources, 22 (1988) 359.
[Sun] C. Sun, R. Hui and J. Roller, J Solid State Electrochem, 14 (2010) 1125.
[Tait] W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Pair O Docs Pubns (1994).
[Takano] K. Takano, S. Nagata, K. Nozaki, A. Momma, T. Kato, Y. Kaga, A. Negishi, K. Kato, T. Inagaki and H. Yoshida, et al., J. Power Sources, 132 (2004) 42.
[Tang1] H. Tang, S. Wang, M. Pan, S. P. Jiang and Y. Ruan, Electrochim. Acta, 52 (2007)3714.
[Tang2] H. Tang, S. Wang, S. P. Jiang and M. Pan, J. Power Sources, 170 ( 2007) 140.
[Therdthianwong] A. Therdthianwong, P. Manomayidthikarn and S. Therdthianwong, Energy, 32 ( 2007) 2401.
[Ticianelli] E. A. Ticianelli, C. R. Derouin, A. Redondo and S. Srinivasan, J. Electrochem. Soc, 135(9) (1988) 2209.
[Freire] T. J.P. Freire, E. R. Gonzalez, J. Electroanal. Chem, 503 (2001) 57.
[VANHERLE] J. VANHERLE and A. J. McEvov, J. Phys. Chem. Solids, 55(4) (1993) 339.
[Wagner] N. Wagner, J. Applied Electrochemistry, 32 (2002) 859.
[Wang1] L.S. Wang and S.A.Barnett, Solid State Ionics, 76 (1995) 103.
[Wang2] S. Wang , T. Kato, S. Nagata, T. Honda, T. Kaneko and N. Iwashita, Solid State Ionics, 146 (2002) 203.
[Wang3] J. X. Wang, Y. K. Tao, J. Shao and W. G. Wang, J. Power Sources, 186 (2009) 344.
[Warburg] E.Warburg and Drud.Ann.der physik, 6 (1901) 125.
[Wilson] M. S. Wilson, F. H. Garzon, K. E. Sickafus and S. Gottesfeld, J. Electrochem. Soc, 140 (1993) 2872.
[Yazdanpour] M. Yazdanpour, A. Esmaeilifar and S. Rowshanzamir, I. J. Hydrogen Energy, 37 (2012) 11290.
[Yu] J. R. Yu, B. L. Yi, M. Han, K. W. Bi, X. Z. Du and P. W. Ming, J. Power Sources, 25(6) (2001) 384.
[Zawodzlnski Jr] T. A. Zawodzlnski Jr., T. E. Springer, F. Urlbe, S. Gottesfeld, Solid State Ionics, 60 (1993) 199.
[Zhang1] J. Zhang, Y. Ji, H. Gao, T. He and J. Liu, J Alloys and Compounds, 395 (2005) 322.
[Zhang2] J. Zhang, G. P. Yin, Z. B. Wang, Q. Z. Lai and K. D. Cai, J. Power Sources, 165 ( 2007) 73.
[Zhao] F. Zhao and A.V. Virkar, J. Power Sources, 141 (2005) 79.
[Zhou] Y. Zhou, Z. Lü, B. Wei, X. Zhu, X. Huang, W. Jiang and W. Su, J Power Sources, 209 (2012) 158.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2012-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明