博碩士論文 953403034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.191.42.205
姓名 徐章銓(Chang-chuan Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高延性鎂合金之特性及成形性研究
(Formability and Characteristics of High Ductile Magnesium Alloys)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ PEMFC石墨複合雙極板之製程與成份研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鎂質輕(比重1.74),可供結構件應用。但是鎂合金受限最密堆積六方(hcp)結構因素成形性較差。因此,藉由熱機處理和搭配熱處理製程嘗試獲得微細晶粒的Mg-Zn-Zr合金板材,進而達到高應變速率之超塑性供工業上應用。在這篇論文,主樣研究Mg-Zn-Zr合金經擠製、退火、及軋延的顯微組織及機械性質,及析出物對機械性質之影響。經350℃及80%軋延率軋延後,再265℃x16hrs退火之晶粒尺寸可達3μm之等軸晶,試片在高溫300℃、10-2S-1及10-3S-1拉伸應變速率下超塑性試驗,其伸長率分別可達240%及429%。
在論文中亦研究具有低密度及室溫良好成形性的α+β兩相之Mg-Li系合金,但是缺乏機械強度及加工硬化效能。選擇擠製之Mg-Li系合金經由不同製程如擠製+時效、擠製+冷軋、擠製+固溶、擠製+固溶+時效、及擠製+固溶+冷軋,探討顯微組織及機械性質,及析出物強化相之機制。結果發現擠製+固溶+冷軋過程中,以MgLiAlZn擠製板材經400℃x30mins固溶處理後,再經90%軋延率冷軋延,因固溶及加工強化雙重效果可提昇抗拉強度,由擠製時166MPa提昇至276MPa,伸長率仍有20%之高強度、高延性之MgLiAlZn板材。
摘要(英) The magnesium is a very light metal(specific weight 1.74) that can be used for structural application. However, it is commonly recognized that magnesium possessed poor formability because of its hexagonal closed packed structure. Therefore, it is tempting to obtain the refining grain structure of Mg-Zn-Zr alloys plate passing through thermo-mechanical treatment processes and heat treatment, in order to get high strain rate superplasticity of Mg-Zn-Zr alloys for industry application. In this thesis, microstructures and mechanical properties of the Mg-Zn-Zr alloy in as-extruded, as-annealed and subsequent rolled states are studied. The effects of deformation amount, possible precipitates on mechanical properties are examined. The result of grain size is reduced to the of 3μm after 80% rolled and at 265℃x16hrs annealed specimens. High temperature tensile tests indicated that the fine-grained rolling structure exhibited superplasticity,the elongation can reach 240% and 429% at strain rate of 10-2S-1 and 10-3S-1 respectively.
I also study two phase(α+β) Mg-Li series alloys,which have better mechanical properties and low density and high formability at room temperature. But Mg-Li series alloys normally have low strength and poor precipitation hardening effect. All those confine its application field. As-extruded of Mg-Li series alloys passed different processes such as extruded/natural aging, extruded/cold rolled, extruded/solid solution treatment, extruded/solid solution treatment/natural aging, and extruded/solid solution treatment/cold rolled . one effective process of improving the mechanical properties is that cold rolled 90% after solution treatment, which tensile strength from as-extruded at 166MPa get up to 276MPa.
關鍵字(中) ★ 熱機處理
★ 超塑性
★ 人工時效
★ 固溶處理
★ 軋延
關鍵字(英) ★ solid solution treatment
★ natural aging
★ rolling
★ thermo-mechanical treatment
★ superplasticity
論文目次 目 錄
摘要……………………………………………………………i
Abstract…………………………………………………………ii
誌謝………………………………………………………………iv
目錄………………………………………………………………v
表目錄……………………………………………………………ix
圖目錄……………………………………………………………xi
第一章 前言…………………………………………………1
1.1 研究背景……………………………………………………1
1.2 研究目的…………………………………………………2
1.3 研究方向…………………………………………………2
第二章 文獻回顧……………………………………………4
2.1 鎂合金的特性……………………………………………4
2.2 鎂合金的簡介……………………………………………5
2.2.1鎂合金的命名方式…………………………………… 5
2.2.2鎂合金的分類………………………………………… 5
2.3 鎂合金的用途……………………………………………6
2.4 添加合金元素對鎂合金之影響…………………………8
2.5 鎂合金的塑性成形…………………………………… 11
2.5.1鎂合金的塑性變形理論……………………………11
2.5.2鎂合金的晶粒細化及方法…………………………13
2.5.3鎂合金的超塑性 …………………………………14
2.5.3.1 超塑性變形原理………………………………14
2.5.3.2 超塑性變形機構………………………………16
2.5.3.3 超塑性之必要條件……………………………17
2.5.3.4 高應變速率超塑性……………………………18
2.6 鎂合金的熱處理…………………………………………19
2.6.1退火處理……………………………………………20
2.6.1.1 回復……………………………………………20
2.6.1.2 再結晶…………………………………………21
2.6.1.3 動態再結晶……………………………………22
2.6.2 固溶和時效…………………………………………24
2.6.2.1 固溶處理………………………………………24
2.6.2.2 時效處理………………………………………24
2.6.2.3 固溶+時效………………………………… …25
2.6.2.3.1 析出硬化原理……………………………25
2.6.2.3.2 析出強化理論……………………………26
2.6.2.3.2.1 差排環機構…………………………26
2.6.2.3.2.2 切割機構……………………………26
2.7 Mg-Li系合金先前的研究……………………………… 28
2.8 Mg-Zn-Zr合金先前的研究………………………………31
第三章 實驗方法與步驟……………………………………48
3.1 實驗流程…………………………………………………48
3.2 實驗材料…………………………………………………48
3.3 實驗設備…………………………………………………49
3.4 軋延與熱處理……………………………………………49
3.4.1 MgZnZr合金……………………………………… 49
3.4.2 MgLi系合金……………………………………… 50
3.5 DSC量測………………………………………………… 50
3.6 型相分析儀測試………………………………………… 51
3.7 XRD測試………………………………………………… 51
3.8機械性質測試…………………………………………… 51
3.8.1硬度測試…………………………………………… 51
3.8.2常溫拉伸測試……………………………………… 53
3.8.3高溫超塑性試驗…………………………………… 54
3.9顯微鏡組織觀察………………………………………… 54
3.9.1光學顯微鏡(OM)組織觀察………………………… 54
3.9.2掃描式電子顯微鏡(SEM)組織觀察…………………54
3.9.3穿透式電子顯微鏡(TEM)組織觀察…………………54
第四章 MgZnZr合金之研究結果與討論……………………68
4.1 再結晶溫度量測結果…………………………………… 68
4.2 XRD繞射分析結果……………………………………… 68
4.2.1 擠製與軋延之優選方位…………………………… 68
4.2.2 析出物XRD繞射分析……………………………… 69
4.3 機械性質試驗結果與討論……………………………… 70
4.3.1硬度測試………………………………………… 70
4.3.2常溫拉伸試驗………………………………………71
4.3.3高溫超塑性拉伸試驗………………………………72
4.4 顯微組織觀察……………………………………………72
4.4.1金相顯微組織………………………………………72
4.4.1.1擠製後之金相顯微組織………………………72
4.4.1.2擠製後退火之金相顯微組織…………………73
4.4.1.3軋延後之金相顯微組織………………………73
4.4.1.4軋延後退火之金相顯微組織…………………76
4.4.2 SEM/EDS析出物分析…………………………………77
4.4.3 TEM/EDS析出物分析…………………………………77
4.5 製程改良後之材料性質…………………………………79
4.5.1 機械性質試驗結果與討論…………………………79
4.5.1.1 常溫拉伸試驗…………………………………79
4.5.1.2 超塑性拉伸試驗………………………………79
4.5.2 顯微組織觀察結果與討論…………………………81
4.5.2.1金相顯微組織觀察……………………………81
4.5.2.2 SEM拉伸破斷面觀察……………………………82
4.6 結論………………………………………………………83
第五章 Mg-Li系合金之研究結果與討論……………… 141
5.1 MgLiAlZn合金………………………………………… 141
5.1.1 再結晶溫度量測結果…………………………… 141
5.1.2 製程分類之顯微組織及機械性質結果與討論… 141
5.1.2.1 擠製………………………………………… 141
5.1.2.2 擠製+時效………………………………… 142
5.1.2.3 擠製+軋延………………………………… 143
5.1.2.4 擠製+固溶………………………………… 144
5.1.2.5 擠製+固溶+時效…………………………… 145
5.1.2.6 擠製+固溶+軋延…………………………… 147
5.1.3綜合討論…………………………………………… 148
5.1.4結論………………………………………………… 149
5.2 MgLiZn合金之研究………………………………………150
5.2.1顯微組織觀察及成份分析…………………………150 5.2.2拉伸性質………………………………………… 151
5.2.3 結論…………………………………………………152
第六章 總結………………………………………………… 174
參考文獻……………………………………………………… 177
參考文獻 參考文獻
1.K.Saitoh,Mater. Jpn. Vol.38,1999,pp.321-324.
2.I.J.Polmear, Mater. Sci. Technol. Vol.10,1994,pp.1-16.
3.F.Czewinski, A.Zielinska-Lipiec, P.J.Oinet,J.Overbecke, Acta Mater. Vol49,2001,pp.1225-1235.
4.R.Matsumoto,K.Osakada, Mater. Trans. Vol.45, 2004, pp.2838- 2844.
5.H.Somekawa, M.Kohzu,S.Tanabe,K.Higashi, Mater. Sci. Forum Vol.350-351, 2000, pp.177-182.
6.A.Takara, Y.Nishikawa, H.Watanabe, H.Somekawam T.Mukai, K.Higashi, Mater. Trans. Vol.45,2004, pp.2531-2536.
7.Michael M Avedesian, Hugh Baker. ASM Speciality Handbook – Magnesium and Magnesium Alloys. Ohio, ASM International,1999.
8.Norsk Hydro Databank, Norsk Hydro Research Center Porsgrunn,1996.
9.Cahn RW, Haasen P, Kramer EJ(ed). Materials Science and Technology – A Comprehensive Treatment in Matucha KH(ed). Structure and Properties of Nonferrous Alloys, Weinheim, VCH, Vol.1996.
10.Jona F, Marcus P M. Magnesium under Pressure: Structure and Phase Transition. J Phys Condens Matter, Vol.15,2003,pp.7727.
11.楊智超,鎂合金材料特性及新製程發展,工業材料,Vol.152,1999, pp.72-73.
12.Shigeharu Kamado,日本鎂合金工業現況及研究趨勢,台灣鎂合金協會,2001, pp.60.
13.戴光勇,鎂合金表面處理技術(下),材料與社會,Vol.25,1989,pp.27.
14.F.A.Lowenheim, Morden Electroplating, Wiley, New York, 1974.
15.D.S.Tawil,”Corrosion and Surface Protection Developments”,in the Proceedings of the Conference of Magnesium Technology, 1986,pp.66.
16.戴光勇,鎂合金表面處理技術(上),材料與社會,Vol.24,1998,pp.57.
17.H.Matsumoto, S.Watanabe and S.Hanada, Mater. Proc. Technol., Vol.169, 2005, pp.9.
18.蔡幸甫,”輕金屬在新世代產品的應用與商機”,工研院產業經濟與資訊服務中心科技專案成果,2002。
19.劉兵,”鎂合金研發應用及產業化”,材料熱處理學報,Vol.22,2001,pp.1.
20.譚欣平,李建準,”鎂合金在摩托車上的應用可行性研究”, 材料熱處理學報,Vol.22, 2001,pp.141。
21.R.L.Edgar, Global Overview on Demand and Applications for Magnesium Alloys, in Kainer K U(ed). Magnesium Alloys and Their Applications, International Congress Magnesium Alloys and Their Applications. Weinheim (Federal Repubic of Germany), Munich, 2000, pp.3.
22.Kainer KU,Bach F Von. The Current State of Technology and Potential for Further Development of Magnesium Applications. In Kainer KU(ed).Kaiser F(trans). Magnesium Alloys and Technoloty, Weinheim: WILEY-VCH Verlag GmbH, 2003.
23.Cahn R W 著,非鐵合金的結構與性能,第八卷,丁道云等譯,北京,科學出版社,1999。
24.劉正,張奎,曾小勤,”鎂基輕質合金理論基礎及其應用”,北京,機械工業出版社,2002。
25.Kubota K, Mabuchi M, higashi K. Review Processing and Mechanical Properties of Fine-grained Magnesium Alloys, Journal of Materials Science, Vol.34, 1999, pp.2255-2262.
26.Baker C, Lorimor G W, Unswroth W. Magnesium Technology. Proc. 49th Conf., International Magnesium Association, 1992.
27.Kaibysher R O, Galier A M, Sokolov B K. The Physics of Metals and Metallography, Vol.78, 1994, pp.209.
28.Hansen N. Metall Trans A, Vol.16A,1985,pp.2167.
29.W.A. Anderson and R.F. Mehl. Trans Met. Soc. AIMW, Vol.161,1945, pp.140.
30.A.H. Chokshi and T.G. Langdon, “The Role of Interface in Superplastic Deformation”,in Superplasticity,Edited by B. Baudlet and M. Suery, Centre National de la Racharche Scientifique,Paris,1985, pp.2.1-2.15.
31.J. Pilling and N. Ridkey, “Superplasticity in Crystalline Solids”, The institute of Metal, London, England, 1989, Chapter 5,pp.102-158.
32.F.A. Mohamed, M.M. Ahmed and T.G. Langdon, “Factors Influencing Ductility in the Superplastic Zn-22pct Al Eutectoid”, Metall. Trans. A, Vol.8A, 1977, pp.933-938.
33.A.K. Gosh and C.H. Hamilton, “Mechanical Behavior and Harding Characteristics of a Superplastic Ti-6Al-4V Alloy”, Metall. Trans. A,Vol.10A, 1979, pp.699-706.
34.R.I.Todd and P.M.Hazzledine,“The Mechanism of Superplasticity and Its Implications”,in Superplasticity and Superplastic Forming, Edited by C.H. Hamilton and N.E. Paton,The Minerals,Metals and Materials Society(TMS),Warrendale, Pannsylvania,1988,pp.33-37.
35.A.K.Ghosh and C.H.Hamilton'"Influences of Material Parameters and Microstructure on Superplastic Forming",Metall-Trans.A, Vol.13A, 1982,pp.731-743.
36.A.K. Mukherjee,“Rate Controlling Mechanism in Superplasticity", Mater. Sci. Eng.,Vo1.8,1971,pp.83-89.
37.M.F.Ashby and R.A.Verrall,“Diffusion-Accommodated Flow and Superplasticity",Acta Metall.,1973.Vol.21,pp.149-163.
38.N.Ridley,“Superplasticity Microstructures",Mater. Sci. and Technol., Vo1.6,1990, pp.1145-1156.
39.R.Pearce and L. Kelly(editors),“Superplasticity in Aerospace- Aluminum“,Ashford Press, Southampton, England,1985, pp.1-160.
40.堀 茂德、浜野 勇、長火田一拓、田村 健、阿倍 睦、田井英男,輕金屬,Vol.44,1994,pp.231.
41.Metals Handbook 9th, Vol.4,Heat Treating,pp.744-753.
42.J.F.Humphreys,“Recrystallization and Recovery",in Materials Science and Technology,ed.By R.W. Cahn, P.Haasen and E. J. Kramer, Vo1.15,1991,pp.371,VCH.
43.蔡東霖,利用ECAE及退火處理細化鋁鎂合金晶粒,國立中山大學,材料科學研究所,民國89年6月,25-33頁。
44.D.Hull and D.J.Bacon,“Introduction to dislocations",3rd edition, Pergamon Press,1984,pp.208.
45.S.P.Gupta,“Kinetics of discontinuous coarsening of cellular precipitate in a Ni-8.5 at.%Sn alloy",Acta Metal1.,Vo1.35,N0.3, 1987, pp.747-757.
46.T.Mohri, T.Nishiwaki, T.Kinoshita, H.Iwasaki,M.Mabuchi, M. Nakamura, T.Ashina,T.Aizawa and K.Higashi,“Microstructure and Tensile Properties of Rolled Mg-5.5mass%-0.6mass%Zr Alloy", Mater.Trans., JIM,Vo1.41(9),2000,pp.1154-1156.
47.H.Takuda, S.Kikuchi and N.Hatta,”Possibility of Grain Refinement for Superplasticity of Mg-Al-Zn Alloy by Pre-deformation”,J. Mater. Sci., Vol.27, 1992, pp.937-940.
48.CJ.Peel,B.Evans,C.A.Baker,D.A.Bennett and P.J.Gregson, Proceeding of the second international Aluminum-Lithium Conference,The Metallurgy Society of AIME,California USA,Apri1,1983,pp.363-392.
49.黃振賢,”金屬熱處理”,文京圖書公司,Vol.2,1986,pp.111.
50.Verhoven, Physical Metallurgy, 1974,pp.363-414.
51.林欣滿,”添加鋁對鎂鋰合金特性影響之研究”,逢甲大學材料科學與工程學系碩士論文,2004。
52.J.Y.Wang,W.P.Hong,P.C.Hsu,C.C.Hsu,S.Lee,Mater. Sci. Forum Vol. 419-422,2003,pp.65-170.
53.Y.Kojima,S.Kamado,Mater. Sci. Forum,Vol.488-489,2005,pp.9-16.
54.A.A.Nayeb-Hashemi,J.B.Clark,A.D.Pelton,in:AA.Nayeb-Hashemi,236 J.B.Clark (Eds.),Phases Diagrams of Binary Magnesium Alloys, ASM 237 Internationa1,Ohi0,USA,1998,pp.184-194.
55.T.G.Byrer, E.L.White, P.D.Frost, The Development of Magnesium- Lithium Alloys for Structural Applications,NASA Contractor Report,Battelle Memorial Institute,Columbus,OH,1963.
56.T.C.Chang,J.Y.Wang,C.L.Chu,S.Lee,Materials Letters,Vol.60, 2006, pp.3272-3267.
57.C.C.Chiu,J.Y.Wang,H.Y.Wu, Mater.Sci.Forum Vol.546-549,2007, pp.229 -232.
58.H.Zhong,R Liu,T.Zhou,H.Li, J.of University of Science and Technology Beijing,Vol.12,N.2,April 2005, pp.182-186.
59.D.K.Xu,L.Liu,Y.B.Xu, E.H.Haan,Scripta Mater. Vol.57,2007, pp.285- 288.
60.J.Y.Wang,T.C.Chang,L.Z.Chang,S.Lee,Materials Transactions Vol.47, N.4,2006,pp.971-976.
61.C.H.Chiu,J.Y.Wang,H.Y.Wu,Materials Transactions, Vol.47, N.4,2006, pp.966-970.
62.T. Liu,S.D.Wu,S.X.Li,P.J.Li,Materials Science and Engineering A, Vol.460-461,2007,pp.499-503.
63.C.H.Chiu,H.Y.Wu,J.Y.Wang,S.Lee,Journal of Alloys and Compounds,2007. (In press,Available online 2 June 2007)
64.G.V.Raynor,J.R.Kench, J. Inst. Met., Vol.88,1959-1960, pp.209 -216.
65.J.C.McDonald,J.Inst.Met., Vol.97,1969,pp.353-362.
66.Y.Kojima,M.Inoue,0.Tanno,J.Jpn.Inst.Met., Vol.54,1990, pp.354 -355.
67.S.Hori,W.Fujitani, J.Jpn.Inst.Light Met.,Vol.40,1990,pp.285 -289.
68.K.Matsuzawa, T.Koshihara, S.Ochiai, Y.Kojima, J. Jpn. Inst. Light Met., 40,1990,pp.659-665.
69.G.S.Song,M.Staiger,M.Kral,Materials Science and Engineering A, Vol.371,2004,pp.371-376.
70.P Crawford,R.Barrosa,J.Mendez,J.Foyos and O.S.Es-Said,Journal of Materials Processing Technology,Vol. 56, Issues 1-4, January,1996, pp.108-118.
71.N.Saito,M.Mabuchi,M,Nakanishi,K.Kubota,K.Higashi,Scripta Mater., Vol.36,1997,pp.551-555.
72.Y.W.Kim,D.H.Kim,H.I.Lee,C.P.Hong,Scripta Mater.,Vol.38,1998, pp.923-929.
73.G.S.Song,M.Staiger,M.Kral,Magnesium Technology 2003,ed.H.I. Kaplan, TMS,2003,pp.77-79.
74.A.Alamo,A.D.Banchik,J.Mater.Sci., Vol.15,1980,pp.222-229.
75.A.Sanschagrin,R.Tremblay,R.Angers,D.Dube, Materials Science and Engineering A, Vol.220,1996,pp.69-77.
76.H.Takuda, T.Enami, K.Kubota and N.Hatta: J. Mater. Process. Technol.,Vol.101, 2000, pp.281-286.
77.R.Sowerby and J.L.Duncan,Int. J. Mech. Sci.,Vol.13, 1971,pp.217-229.
78.A.K.Ghosh: Metall. Mater. Trans. B, Vol.5,1972, pp.1607-1616.
79.F.Stachowicz, J. Mech. Work. Technol., Vol.19,pp.305-317.
80.E.M.Mielnik, Metalworking Science and Engineering, Ch. 11,1993, pp.808-810,New York, McGraw-Hill, Inc.
81.T.C.Chang et al., Journal of Materials Processing Technology, Vol.140, 2003,pp.588-591.
82.B.M.Clossset et al., Conference Magnesium Alloys and their Applications, April 28-30, 1998, Wolfburg, Gemany.
83.A.Bussiba et al., Materials Science and Engineering A, Vol.302, 2001,pp.56-62.
84.A.Galiyev, R.Kaibyshev, Scripta Materialia, Vol.51, 2004,pp.89-93.
85.H.Watanabe, T.Mukai and K.Higashi: Scripta Mater., Vol.40, 1999,pp.477-481.
86.H.Watanabe et al., materials Science and Engineering A, Vol.433,2006,pp.175-181.
87.Roberto B.Figueiredo, Terence G. Langdon, Mater. Sci. Eng.A, Vol.430,2006,pp.151-156.
88.R.Lapovok, P.F.Thomson, R.Cottam, Y.Estrin, Mater. Sci. Eng. A, Vol.410-411, 2005, pp.390-393.
89.R.Narayanasamy and C.Sathiya Narayanan: Mater. Sci. Eng. A, Vol.399, 2005,pp.292-307.
90.里 達雄,マクネシウム系時效析出合金,金屬,Vol.71,2001,pp.42.
91.L.Y.Wei, The Intergranular Microstructure of Cast Mg-Zn and Mg-Zn-RE Alloy. Metallurgical & Materials Transactions A, Vol.8,1995,pp.1947.
92.A.Galiyev,R.Kaibyshev,G.Gottstein, Acta Materialia, Vol.49, 2001, pp.1199-1207.
93.A.Mwembela, E.B.Konopleva and H.J.McQueen, Scripta Materialia, Vol.37,1997,pp.1789-1795.
94.H. Watanabe, K. Moriwaki,T. Mukai,T. Ohsuna, K. Hiraga and K. Higashi.Materials Processing for Structural Stability in a ZK60 Magnesium Alloy. Materials Transactions, Vol.44, 2003,pp.775 -781.
95.Hao Zhong, Linping Feng, Peiying Liu and Tietao Zhou,”Design of a Mg-Li-Al-Zn alloy by means of CALPHAD approach”, Journal of Computer-Aided Materials Design, 10: 191-199,2003.
96.R.E.Lee and W.J.D.Jones,”Microplasticity and Fatigue of Some Magnesium-Lithium Alloys”, Journal of Materials Science, Vol.9,1974,pp.469-475.
97.G.S.Song, M.Staiger, M.Kral, Magnesium Technology 2003, ed. H.I. Kaplan, TMS, 2003, pp.77-79.
98.D.Ravi Kumar and K.Swaminathan: Mater. Sci. Technol., Vol., 15, 1999, pp.1241-1252.
指導教授 李雄(Shyong Lee) 審核日期 2009-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明