博碩士論文 953403039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.225.194.144
姓名 許傅凱(Fu-kai Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響
(Effects of alloying elements (Mn, Al) and ball milling treatment on the discharge capacity and cycle life of Mg2Ni-type hydrogen storage alloy)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響★ 核電廠元件疲勞壽命模擬分析
★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析★ MOCVD玻璃承載盤溫度場分析
★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究
★ AISI 347不銹鋼腐蝕疲勞行為★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響
★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為★ 電子構裝用無鉛銲錫之低週疲勞行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 結合電阻式熔煉與自行開發的恆溫揮發鑄造程序(Isothermal evaporation casting process, IECP),成功產製儲氫合金Mg2Ni- x mol% Mg3MNi2 (M=Mn, Al;x=0, 15, 30, 60, 100)電極材料,此製備法的特點是可調整Mn與Al元素比例生產不同含量的Mg3MnNi2與Mg3AlNi2,並使用IECP法純化Mg2Ni合金。本實驗將探討錳與鋁含量對於合金結構、放電容量、循環穩定性與表面元素組成之影響。

首先分析不同錳與鋁含量之合金組成比例與晶體結構,合金分別由Mg2Ni與新相Mg3MnNi2或新相Mg3AlNi2所組成。結果顯示,未含錳與鋁時(x=0),合金呈現單一六方最密堆積結構之Mg2Ni,隨著錳與鋁含量增加,新相Mg3MnNi2或新相Mg3AlNi2於合金中晶出,當錳與鋁含量達到x=100時,合金中生成單一面心立方結構之新相Mg3MnNi2或新相Mg3AlNi2。

隨著錳與鋁元素的添加,合金中生成新相Mg3MnNi2與Mg3AlNi2,當新相含量逐漸增加,合金之最大放電容量隨之提高。合金之放電容量由Mg2Ni合金的17 mAh/g分別提升為Mg3MnNi2合金的166 mAh/g與Mg3AlNi2合金的110 mAh/g。此放電容量的提高歸因於新相Mg3MnNi2與Mg3AlNi2能提升合金表面之抗蝕性能,有效改善合金進行充放氫反應之活性。

添加錳與鋁元素於合金中生成新相Mg3MnNi2與Mg3AlNi2能有效減緩合金放電容量之衰退速率。在不同錳含量之合金中,Mg3MnNi2合金具有最佳循環穩定性,在第15次充放電循環時,仍保有最大放電容量之62.05%,此循環壽命的提升歸因於Mg3MnNi2合金具有抑制合金表面發生氧化反應之能力。在不同鋁含量的合金中,Mg2Ni- 15 mol% Mg3AlNi2合金則具有最佳耐蝕性,在第25次循環時,保有最大放電容量(50 mAh/g)之76%。此循環壽命提升原因為合金含有15 mol% Mg3AlNi2時,能降低合金在充放電循環過程中粉化速率,且表面生成氧化層Al2O3,減緩合金表面的腐蝕反應,提升合金之循環穩定性。

由上述結果可知新相Mg3MnNi2有效提升合金之放電容量與循環壽命,為進一步改善負極材料之電化學性能符合實際應用之需求。將Mg3MnNi2合金與Co、Ti金屬粉末混合球磨30分鐘製備Mg3MnNi2- x mol% M (M=Co, Ti; x=0, 200)合金。本研究將探討Co、Ti金屬元素對合成材料之結構、表面腐蝕行為與電化學性質之影響。

對於球磨處理後Mg3MnNi2合金,內部結構由多晶組織轉為奈米晶組織,而Co與Ti金屬元素促使Mg3MnNi2合金生成非晶相組織,此外,Co與Ti金屬元素能有效提升合金表面之抗腐蝕能力。Mg3MnNi2、Mg3MnNi2-2Co 與Mg3MnNi2-2Ti經球磨處理後,最大放電容量分別可達206 mAh/g, 238 mAh/g與209 mAh/g。

Mg3MnNi2-2Ti合金雖具有較低的最大放電容量,但此合金之電容量保持速率高於Mg3MnNi2與Mg3MnNi2-2Co合金。在十次充放電循環次數後,Mg3MnNi2、Mg3MnNi2-2Co 與Mg3MnNi2-2Ti合金之電容量保持速率分別為51%、59%與80%。結果顯示Co與Ti金屬元素添加能抑制Mg3MnNi2合金表面之氧化反應。含Ti合金的表面所生成TiO2氧化膜有效改善合金之循環穩定性。

使用Ni元素置換Mg2Cu合金中Cu元素改善合金的吸放氫性質之研究中,甚少研究針對Mg-Cu-Ni三元合金進行吸放氫反應過程中作結構分析。本研究將結合電阻熔煉法與恆溫揮發鑄造法(IECP)製備Mg2Cu1-xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1)合金,探討Ni元素置換對合金的結構、儲放氫性質與電化學性能之影響。

X光單晶繞射結果顯示晶體結構由FCO結構的Mg2Cu轉為HCP結構的含Ni合金,且晶格體積隨Ni含量增加而縮小。但吸氫速率與儲氫量隨Ni含量增加而提高,在溫度3000C與氫壓50 atm環境條件,Mg2Cu與Mg2Ni合金的儲氫量分別為2.54 wt%與3.58 wt%。

合金經活化處理後進行充氫反應可生成MgH2、MgCu2與Mg2NiH4化合物,當合金進行放氫反應時,結構回復至單相Mg-Cu-Ni三元化合物,其放氫平台壓相較Mg-Cu與Mg-Ni二元化合物為高。合金中Ni含量提高有效降低MgH2與Mg2NiH4兩相之放氫溫度。當合金添加微量銅能改善表面的抗蝕特性,Mg2Ni0.6Cu0.4合金具有最大放電容量(40 mAh/g)。

摘要(英) Mg2Ni- x mol% Mg3MNi2 (M=Mn, Al;x=0, 15, 30, 60, 100), the novel composite alloys employed for hydrogen storage electrode, have been successfully synthesized by a method combining electric resistance melting with isothermal evaporation casting process (IECP). The characteristic of synthesizing the composite alloys Mg2Ni- x mol% Mg3MNi2 (M=Mn, Al) with various Mg3MnNi2 and Mg3AlNi2 content could be applied to both formation proportions of Mg3MnNi2 and Mg3AlNi2 through adding Mn and Al element, and Mg2Ni alloy synthesis through IECP. Therefore, the composite alloys Mg2Ni- x mol% Mg3MNi2 (M=Mn, Al;x=0, 15, 30, 60, 100) have been synthesized by the preparation method. The influences of the Mg3MnNi2 and Mg3AlNi2 phases on the structure, surface chemical composition and electrochemical properties of the synthesized materials were studied.

To confirm the purity of the composite alloys, the composition and structure were examined by electron probe X-ray microanalyzer (EPMA) and X-ray diffraction (XRD). According to EPMA analysis, the composite alloys are composed of Mg2Ni phase and the new Mg3MnNi2 phase or the new Mg3AlNi2 phase. XRD analysis results show that both formation phases of the composite alloys were Mg2Ni with hexagonal crystal structure and Mg3MnNi2 or Mg3AlNi2 with face-centered cubic crystal structure.

It is found on the electrochemical studies that maximum discharge capacities of the composite alloys increase with the increasing content of the Mg3MnNi2 and Mg3AlNi2 phase. The discharge capacities of the electrode alloys are effectively improved from 17 mAh/g of the Mg2Ni alloy to 166 mAh/g of the Mg3MnNi2 alloy and 110 mAh/g of the Mg3AlNi2 alloy, respectively. Cyclic voltammetry (CV) results confirm that the increasing content of the Mg3MnNi2 phase and the Mg3AlNi2 phase effectively improves the reaction activity of the electrode alloys. Surface analyses indicate that the phases can enhance the anti-corrosive performance of the particle surface of the composite alloys.

It is also found on the cyclic discharge stability studies that both Mg3MnNi2 phase and Mg3AlNi2 phase possess a positive effect on the retardation of cycling capacity degradation rate of the electrode materials. Among the Mn-containing alloys, Mg3MnNi2 alloy had the best cyclic discharge stability. This alloy has kept 62.05% of its maximum discharge capacity at 15th cycle. It referred the improvement in the cycle life to that Mg3MnNi2 alloy was used to inhibit the formation of corrosive reaction against the alloy surface in the alkaline solution. Among the Al-containing alloys, Mg2Ni-15 mol% Mg3AlNi2 composite had the best anti-corrosion performance. This composite has kept 76% of its maximum discharge capacity (50 mAh/g) at 25th cycle. The improvement of the cycling stability of the electrode alloy with 15 mol% Mg3AlNi2 can be ascribed to the decrease in the rate of pulverization of the alloy during cycling, leading to retard the corrosion reaction against the alloy surface due to the formation of a dense Al2O3 film.

The results as mention above reveal that Mg3MnNi2 phase possesses the advantage of improving discharge capacity and cyclic stability of the electrode alloy. In order to further enhance the electrochemical performance of Mg3MnNi2 alloy, the prepared Mg3MnNi2 alloy was ball milled with metallic Co and Ti element for 30 min to produce Mg3MnNi2- x mol% M (M=Co, Ti; x=0, 200) alloys. The influences of the Co and Ti element on the structure, surface corrosion behavior and electrochemical properties of the synthesized materials were investigated.

For the ball milled Mg3MnNi2 alloy, the characteristic peaks of the Mg3MnNi2 phase decreased in intensity and broadened, revealing that there was a phase transformation from polycrystalline to nanocrystalline state. X-ray diffraction (XRD) studies showed that Co and Ti facilitated the amorphization of Mg3MnNi2 alloy. Furthermore, the addition of Co and Ti elements are effective in enhancing the anti-corrosion ability of the alloys. The maximum discharge capacities of ball-milled Mg3MnNi2, Mg3MnNi2-2Co and Mg3MnNi2-2Ti alloys were 206 mAh/g, 238 mAh/g and 209 mAh/g, respectively.

Although Mg3MnNi2-2Ti alloy had lower maximum discharge capacity, the capacity retaining rate of this alloy was much higher than those of Mg3MnNi2 and Mg3MnNi2-2Co alloys. After ten cycles charge/discharge, the capacity retention rates for ball-milled Mg3MnNi2, Mg3MnNi2-2Co and Mg3MnNi2-2Ti alloys are 51%, 59% and 80%, respectively. These results indicate that the positive effect on suppressing of the oxidation of the Mg3MnNi2 alloy surface was caused by the introduction of Co and Ti metallic elements. Combined with XPS depth profile analyses, it is suggested that the TiO2 oxide layer would be effective in improving the cyclic stability of the electrode alloy.

For improving the hydriding/dehydriding properties of Mg2Cu alloy through the substitution of Ni for Cu, few ones on the structure analyses of Mg-Cu-Ni ternary alloy were investigated. The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1-xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied.

The X-ray single-crystal diffraction results indicated that crystal structure transforms Mg2Cu with FCO into Ni-containing alloys with HCP structure, and it leads to a decrement of the cell volume with increasing Ni concentration. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt.% H, respectively, at 3000C under 50 atm H2.

After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg-Cu-Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg-Cu and Mg-Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases. The partial substitution of Cu for Ni is slightly effective in improving the discharge capacity of Mg-Cu-Ni alloys, and Mg2Ni0.6Cu0.4 alloy reaches the maximum discharge capacity (40 mAh/g) among the alloys.

關鍵字(中) ★ 放氫溫度
★ 吸氫速率
★ 非晶相
★ 奈米晶
★ 球磨
★ 電化學性質
★ 循環穩定性
★ 恆溫揮發鑄造程序
★ 儲氫
關鍵字(英) ★ desorption temperature
★ absorption kinetics
★ amorphization
★ nanocrystalline
★ ball milled
★ electrochemical properties
★ cyclic stability
★ Isothermal evaporation casting process
★ Hydrogen storage
論文目次 Content
中文摘要…………………………………………………………… i
Abstract…………………………………………………………… iv
誌謝………………………………………………………………… viii
Content…………………………………………………………… ix
Table list………………………………………………………… xii
Figure list……………………………………………………… xiii
CHAPTER 1 Introduction
1.1 Background…………………………………………………… 1
1.2 Overview of this study…………………………………… 3
CHAPTER 2 Literature review
2.1 Introduction on nickel-metal hydride (Ni-MH) battery 4
2.1.1 Development and application of Ni-MH battery………4
2.1.2 Structure and principle of Ni-MH battery……………6
2.2 Introduction to hydrogen storage alloys……………… 10
2.2.1 Material requirements for application to Ni-MH
battery…………………………………………………………12
2.2.2 (Dis-)advantage and characteristic of Mg2Ni
hydrogen storage alloy…………………………………… 16
2.3 Preparation method for Mg2Ni alloy …………………… 17
2.3.1 Induction melting…………………………………………17
2.3.2 (Hydride-) combustion synthesis………………………18
2.3.3 Mechanical alloying………………………………………20
2.3.4 Isothermal Evaporation Casting Process (IECP) … 22
2.4 Modification of alloy electrode in Ni-MH battery……24
2.4.1 Elemental substitution………………………………… 24
2.4.2 High energy ball milling method………………………27
2.4.3 Ball milling Mg2Ni alloy with various additive
elements…………………………………………………… 29
2.5 Motivation and purpose………………………………………31
CHAPTER 3 Experimental Procedures
3.1 Alloy preparation…………………………………………… 36
3.1.1 The concept and procedure of MMNx and MANx alloys
fabrication…………………………………………………37
3.1.2 The procedure of milled Mg3MnNi2 alloy with Co and
Ti element………………………………………………… 39
3.1.3 The procedure of as-cast Mg2Ni1-xCux alloy
fabrication…………………………………………………40
3.2 Structure observation and surface
analysis…………………………………………………………41
3.2.1 X-ray diffraction…………………………………………41
3.2.2 X-ray single-crystal diffraction…………………… 41
3.2.3 Scanning electron microscopy………………………… 41
3.2.4 Electron probe x-ray microanalyzer………………… 41
3.2.5 Transmission electron microscopy…………………… 42
3.2.6 Differential scanning calorimetry……………………42
3.2.7 X-ray photoelectron spectroscopy…………………… 42
3.2.8 Image analyzer…………………………………………… 42
3.3 Assembly of the battery parts…………………………… 43
3.3.1 Positive electrode……………………………………… 43
3.3.2 Negative electrode……………………………………… 43
3.3.3 Electrolyte…………………………………………………43
3.3.4 Battery fabrication………………………………………43
3.4 Electrochemical properties measurement…………………44
3.4.1 Charge/discharge cycle test……………………………44
3.4.2 Cyclic voltammetry test…………………………………44
3.4.3 Potentiodynamic polarization test……………………44
CHAPTER 4 Effects of Mg3MnNi2 and Mg3AlNi2 content on the
electrochemical characteristics of Mg2Ni-Mg3MNi2
(M=Mn, Al) electrode alloys
4.1 Effects of Mg3MnNi2 and Mg3AlNi2 content on the
structure of electrode alloys
4.1.1 Thermal analysis………………………………………… 45
4.1.2 Composition analysis…………………………………… 45
4.1.3 X-ray diffraction analysis…………………………… 46
4.2 Effects of Mg3MnNi2 and Mg3AlNi2 content on the
electrochemical performance of electrode alloys…… 47
4.2.1 Discharge capacity test…………………………………47
4.2.2 Cyclic voltammetry test…………………………………47
4.3 Effects of Mg3MnNi2 and Mg3AlNi2 content on the
cyclic stability of electrode alloys 49
4.3.1 Cycle life test……………………………………………49
4.3.2 Depth profile analysis and surface composition
measurement…………………………………………………50
4.3.3 Surface morphology observation……………………… 51
4.4 Conclusions…………………………………………………… 52
CHAPTER 5 Effects of the ball-milling with metallic Co and
Ti powder on the electrode properties of
Mg3MnNi2 alloy
5.1 Effect of Co and Ti element on the structure of
electrode alloy……………………………………………… 54
5.1.1 XRD analysis……………………………………………… 54
5.1.2 TEM analysis……………………………………………… 54
5.2 Effect of Co and Ti element on the electrochemical
property of electrode alloy……………………………… 55
5.2.1 Corrosion behavior……………………………………… 55
5.2.2 Discharge capacity ………………………………………55
5.3 Effect of Co and Ti element on the cyclic stability
of electrode alloy……………………………………………57
5.3.1 Cycle life test……………………………………………57
5.3.2 Depth profile analysis and surface compositions…57
5.4 Conclusions…………………………………………………… 60
CHAPTER 6 Structure and hydrogen storage properties of
Mg2Cu1-xNix alloys
6.1 The structure of the as-cast alloys…………………… 61
6.2 The hydrogen absorption properties of the as-cast
alloys……………………………………………………………62
6.2.1 Hydrogen absorption kinetics………………………… 62
6.2.2 P-C-I curves of the as-cast alloys………………… 62
6.2.3 Thermal stability of the as-cast alloys……………64
6.3 Discharge performance of the as-cast alloys………… 66
6.4 Conclusions…………………………………………………… 67
CHAPTER 7 General conclusions……………………………………68
CHAPTER 8 Future works…………………………………………… 71
REFERENCES…………………………………………………………… 73
Publication List……………………………………………………131
Table List
Table 2.1 The ICP-AES identification of Mg2Ni alloy
produced by IECP……………………………………… 88
Table 2.2 Discharge capacity and cycle life of the Mg-
based alloy electrodes……………………………… 88
Table 3.1(a) The ICP-AES identification of the as-cast
MMNx (0≦x≦100) alloys………………………… 89
Table 3.1(b) The ICP-AES identification of the as-cast
MANx (0≦x≦100) alloys………………………… 89
Table 3.1(c) The ICP-AES identification of the as-cast
MNCx (x=0, 0.2, 0.4) alloys…………………… 90
Table 4.1 The potential and current density of anodic peak
for the MMNx (0≦x≦100) alloy…………………… 90
Table 4.2 The potential and current density of anodic peak
for the MANx (0≦x≦100) alloy…………………… 91
Table 4.3 The cyclic stability of the as-cast MMNx (0≦x≦
100) alloys………………………………………………91
Table 4.4 The cyclic stability of the as-cast MANx (0≦x≦
100) alloys………………………………………………92
Table 5.1 Tafel fitting data of the BM-MMN、BM-MMNC、BM-
MMNT alloys………Content
Figure List
Fig. 2.1 Cylindrical single cell and module for HEV
application……………………………………………… 95
Fig. 2.2 Structure of cylindrical battery cell…………… 95
Fig. 2.3 Bode diagram showing the transformations among
various phases of nickel positive electrode…… 96
Fig. 2.4 Variation of conductivity with KOH weight
percentage…………………………………………………96
Fig. 2.5 Schematic diagram of the electrochemical
charge/discharge reaction process of a Ni/MH
battery…………………………………………………… 97
Fig. 2.6 Flow sheet of (A) conventional method and (B)
hydriding combustion synthesis process for the
production of Mg2NiH4………………………………… 98
Fig. 2.7 X-ray diffraction patterns of the sample
synthesized at 2 MPa hydrogen……………………… 99
Fig. 2.8 X-ray diffraction patterns of the samples
quenched at various temperatures……………………99
Fig. 2.9 Schematic drawings of (a) a tumbler mill, and (b)
an attritor mill……………………………………… 100
Fig. 2.10 Schematic drawing of ball-powder-ball
collision……………………………………………… 101
Fig. 2.11 X-ray diffraction patterns of the 2Mg-Ni mixture
powder obtained at different impact times in
vibratory mill. (a)MA/20 h; (b)MA/100 h; (c)
MA/160 h; (d)MA/200 h; (e)MA/250 h. Main lines
of crystallized Mg2Ni, Mg and Ni are
respectively marked by star, triangle and
diamond. A full circle indicates an amorphous
phase…………………………………………………… 101
Fig. 2.12 Binary phase diagram of Mg-Ni system……………102
Fig. 2.13 The illustration of IECP (a) the thermal profile
(b) the melting procedure………………………… 103
Fig. 2.14 The XRD patterns of the starting Mg, Ni and the
as-cast Mg2Ni alloy………………………………… 103
Fig. 2.15 XRD patterns of the Mg2-xAlxNi alloys: (a) x=0,
(b) x=0.1, (c) x=0.3 and (d) x=0.5………………104
Fig. 2.16 X-ray diffraction profiles of Mg1.8M0.2Ni (M=Ti,
Ce) and Mg2Ni0.8N0.2 (N=Mn,Co)……………………104
Fig. 2.17 Discharge curves of the as-cast alloys…………105
Fig. 2.18 XRD patterns of Mg2Ni with 120 h and 160 h
milling………………………………………………… 105
Fig. 2.19 Overlaid XRD patterns of Mg2Ni alloy……………106
Fig. 2.20 Ball milling time dependence of the discharge
capacities of Mg2Ni alloys…………………………106
Fig. 2.21 Cycle life of the electrodes prepared from (a)
Mg2Ni, (b) Mg1.9Sn0.1Ni and (c) Mg1.7Sn0.3Ni 107
Fig. 2.22 Overlaid XRD patterns of Mg1.5Al0.5-xZrxNi (x =
0.1, 0.2, 0.3, 0.4) type alloys synthesized by
100 h milling………………………………………… 107
Fig. 2.23 Effect of ball milling time on the discharge
capacity of Mg1.5Al0.5-xZrxNi (x=0.1, 0.2, 0.3,
0.4) type alloys………………………………………108
Fig. 2.24 Cyclic stability of Mg1.5Al0.5-xZrxNi (x = 0.1,
0.2, 0.3, 0.4) alloys synthesized by 100 h
milling………………………………………………… 108
Fig. 2.25 Discharge capacity variation of the electrodes
based on non-annealed Mg2Ni-type alloys with the
cycle number……………………………………………109
Fig. 2.26 Discharge capacities as a function of cycle
number for Mg2Ni, Mg1.5Al0.5Ni and
Mg1.5Al0.3V0.2Ni alloy electrodes……………… 109
Fig. 3.1 Experimental procedure……………………………… 110
Fig. 3.2 The thermal profile of the MMN15 and MAN15 alloys
preparing…………………………………………………111
Fig. 3.3 The thermal profile of the MNC0.2 alloy
preparing…………………………………………………111
Fig. 3.4 (a) positive electrode; (b) negative electrode 112
Fig. 3.5 (a)Appearance of the assembly of battery parts;
(b)Sketch of battery fabrication………………… 112
Fig. 3.6 Sketch of electrochemical measurement
system…………………………………………………… 113
Fig. 4.1 DSC profile of the as-cast Mg3MnNi2 alloy (the
endothermic peak around 1120℃ indicated the melt
of Mg3MnNi2 alloy)…………………………………… 113
Fig. 4.2 SEM images of the as-cast alloys: (a)MMN15, (b)
MMN30, (c)MMN60 and (d)MMN100. (A: Mg2Ni with Mn
solute atoms, B: Mg3MnNi2, C: porosity)…………114
Fig. 4.3 SEM images of the as-cast alloys: (a)MAN15, (b)
MAN30, (c)MAN60 and (d)MAN100. (1: Mg2Ni, 2:
Mg3AlNi2, 3: porosity)……………………………… 115
Fig. 4.4 XRD patterns of the as-cast alloys: (a)MMN0, (b)
MMN15, (c)MMN30, (d)MMN60 and (e)MMN100…………116
Fig. 4.5 XRD patterns of the as-cast alloys: (a)MAN0, (b)
MAN15, (c)MAN30, (d)MAN60 and (e)MAN100…………116
Fig. 4.6 Discharge capacity as a function of the number of
cycles of the as-cast alloys: (a)MMN0, (b)MMN15,
(c)MMN30, (d)MMN60 and (e)MMN100………………… 117
Fig. 4.7 Discharge capacity as a function of the number of
cycles of the as-cast alloys: (a)MAN0, (b)MAN15,
(c)MAN30, (d)MAN60 and (e)MAN100………………… 117
Fig. 4.8 Cyclic voltammograms curves for the as-cast
alloys: (a)MMN0, (b)MMN15, (c)MMN30, (d)MMN60 and
(e)MMN100…………………………………………………118
Fig. 4.9 Cyclic voltammograms curves for the as-cast
alloys: (a)MAN0, (b)MAN15, (c)MAN30, (d)MAN60 and
(e)MAN100…………………………………………………118
Fig. 4.10 XPS depth profiles of cycled as-cast MMN0 alloy
after 5 cycles…………………………………………119
Fig. 4.11 XPS depth profiles of cycled as-cast alloys: (a)
MMN100 and (b)MAN100 after 5 cycles…………… 119
Fig. 4.12 XPS spectra of Mg2p and Al2p of the MAN100 alloy
electrode……………………………………………… 120
Fig. 4.13 SEM micrographs of the MANx (x = 15, 100) alloys
before and after cycling (x = 15 : (a) as-cast,
(b) after 25 cycles ; x = 100 : (c) as-cast, (d)
after 25 cycles)………………………………………120
Fig. 5.1 XRD patterns of (a) Mg3MnNi2, (b) BM-MMN, (c) BM-
MMNC and (d) BM-MMNT alloys…………………………121
Fig. 5.2 (a) Bright-field and (b) dark-field TEM
micrographs of the BM-MMN alloys. The
corresponding SAD pattern is inserted into the
bright-field image…………………………………… 121
Fig. 5.3 Potentiodynamic polarization curves of the BM-
MMN, BM-MMNC and BM-MMNT alloy electrodes………122
Fig. 5.4 The discharge capacity as a function of cycle
number of (a) Mg3MnNi2, (b) BM-MMN, (c) BM-MMNC
and (d) BM-MMNT alloy electrodes………………… 122
Fig. 5.5 XPS depth profiles of cycled (a) BM-MMN, (b) BM-
MMNC and (c) BM-MMNT alloys after 8 cycles…… 123
Fig. 5.6 XPS spectra of Mg2p, Co2p and Ti2p of (a) BM-MMN,
(b) BM-MMNC and (c)BM-MMNT alloy after 8 cycles,
respectively…………………………………………… 124
Fig. 6.1 XRD patterns of the as-cast alloys: (a)Mg2Cu, (b)
Mg2Cu0.8Ni0.2, (c)Mg2Cu0.6Ni0.4, (d)
Mg2Cu0.4Ni0.6, (e)Mg2Cu0.2Ni0.8 and (f)
Mg2Ni………………………………………………………125
Fig. 6.2 Hydrogen content vs. time curves of the activated
Mg2Cu1-xNix (x = 0, 0.2, 0.4,0.6, 0.8, 1) alloys
at 300℃ under 50 atm H2…………………………… 125
Fig. 6.3 Pressure composition isotherms (P-C-T curves) of
the activated (a)Mg2Cu, (b)Mg2Cu0.8Ni0.2, (c)
Mg2Cu0.6Ni0.4, (d)Mg2Cu0.4Ni0.6, (e)Mg2Cu0.2Ni0.8
and (f)Mg2Ni alloys at 300℃. ( i: un-hydriding,
ii: partial-hydriding and iii: full-hydriding)
…………………………………………………………… 126
Fig. 6.4 The X-ray diffraction profiles of (a)Mg2Cu, (b)
Mg2Cu0.8Ni0.2, (c)Mg2Cu0.6Ni0.4, (d)
Mg2Cu0.4Ni0.6, (e)Mg2Cu0.2Ni0.8 and (f)Mg2Ni
alloys after three stages: (i)un-hydriding, (ii)
partial-hydriding and (iii)full-hydriding at
300℃, respectively……………………………………128
Fig. 6.5 Differential scanning calorimetry (DSC) analysis
for the hydrogenated- Mg and Mg2Cu1-xNix alloys128
Fig. 6.6 XRD patterns of hydrogenated (a)Mg2Cu0.8Ni0.2, (b)
Mg2Cu0.6Ni0.4, (c) Mg2Cu0.4Ni0.6 and (d)
Mg2Cu0.2Ni0.8 alloys after each endothermic
peak……………………………………………………… 129
Fig. 6.7 Discharge capacity as a function of the number of
cycles of the as-cast alloys: (a)Mg2Ni, (b)
Mg2Ni0.8Cu0.2, (c)Mg2Ni0.6Cu0.4, (d)
Mg2Ni0.4Cu0.6, (e)Mg2Ni0.2Cu0.8 and (f)Mg2Cu… 130
參考文獻 [1]C.Y. Zhang, T. Gao, G.X. Li, Y.G. Zhang, L.J. Tang, “First-principles calculations on the
crystal and electronic structures of LaNi4.5Al0.5H6-xHex (x = 0, 0.5 and 1),” Solid State
Commun., 147 (2008) 317-322.
[2]Y. Osumi, H. Suzuki, A. Kato, M. Nakane, “Hydrogen absorption-desorption characteristics of misch metal-nickel-silicon alloys,” J. Less-Common Met., 84 (1982) 99-106.
[3]Y. Osumi, H. Suzuki, A. Kato, K. Oguro, S. Kawai, M. Kaneko, “Hydrogen absorption-desorption characteristics of Mm---Ni---Al---M and Mm---Ni---Mn---M alloys (Mm misch metal),” J. Less-Common Met., 89 (1983) 287-292.
[4]H.F. Bittner, C.C. Badcock, “Electrochemical utilization of metal hydrides,” J. Electrochem. Soc., 130 (1983) 193C-198C.
[5]J.J.G. Willems, K.H.J. Buschow, “From permanent magnets to rechargeable hydride electrodes,” J. Less-Common Met., 129 (1987) 13-30.
[6]T. Sakai, H. Ishikawa, K. Oguro, C. Iwakura, H. Yoneyama, “Effects of microencapsulation of hydrogen storage alloy on the performances of sealed nickel/metal hydride batteries,” J. Electrochem. Soc., 134 (1987) 558-562.
[7]H. Kaiya, T. Ookawa, “Improvement in cycle life performance of high capacity nickel- metal hydride battery,” J. Alloys Comp., 231 (1995) 598-603.
[8]T. Sakai, H. Yoshinaga, H. Miyamura, N. Kuriyama, H. Ishikawa, “Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys,” J. Alloys Comp., 180 (1992) 37-54.
[9]I. Uehara, T. Sakai, H. Ishikawa, “The state of research and development for applications of metal hydrides in Japan,” J. Alloys Comp., 253-254 (1997) 635-641.
[10]T. Sakai, I. Uehara, H. Ishikawa, “R&D on metal hydride materials and Ni–MH batteries in Japan,” J. Alloys Comp., 293-295 (1999) 762-769.
[11]D.Y. Jung, B.H. Lee, S.W. Kim, “Development of battery management system for nickel-metal hydride batteries in electric vehicle applications,” J. Power Sources, 109 (2002) 1-10.
[12]N.V. Iyer, M.G. Badami, “Two-wheeled motor vehicle technology in India: Evolution, prospects and issues,” Energy Policy, 35 (2007) 4319-4331.
[13]L. Xu, J. Li, J. Hua, X. Li, M. Ouyang, “Optimal vehicle control strategy of a fuel cell/battery hybrid city bus,” Int. J. Hydrogen Energy, 34 (2009) 7323-7333.
[14]S. Brown, D. Pyke, P. Steenhof, “Electric vehicles: The role and importance of standards in an emerging market,” Energy Policy, 38 (2010) 3797-3806.
[15]A. Taniguchi, N. Fujioka, M. Ikoma, A. Ohta, “Development of nickel/metal-hydride batteries for EVs and HEVs,” J. Power Sources, 100 (2001) 117-124.
[16]A.K. Shukla, S. Venugopalan, B. Hariprakash, “Nickel-based rechargeable batteries,” J. Power Sources, 100 (2001) 125-148.
[17]T. Kohno, M. Yamamoto, M. Kanda, “Electrochemical properties of mechanically ground Mg2Ni alloy,” J. Alloys Comp., 293-295 (1999) 643-647.
[18]N. Cui, J.L. Lou, “Effects of oxide additions on electrochemical hydriding and dehydriding behavior of Mg2Ni-type hydrogen storage alloy electrode in 6M KOH solution,” Electrochimica Acta, 44 (1998) 711-720.
[19]J.L. Lou, N. Cui, “Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution,” J. Alloys Comp., 264 (1999) 299-305.
[20]N.H. Goo, J.H. Woo, K.S. Lee, “Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel,” J. Alloys Comp., 288 (1999) 286-293.
[21]H.T. Yuan, L.B. Wang, R. Cao, Y.J. Wang, Y.S. Zhang, D.Y. Yan, W.H. Zhang, W.L. Gong, “Electrochemical characteristics of Mg2−xAlxNi (0≤x≤0.5) alloys,” J. Alloys Comp., 309 (2000) 208-211.
[22]A.A. Mohamad, N.S. Mohamed, Y. Alias, A.K. Arof, “Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries,” J. Alloys Comp., 337 (2002) 208-213.
[23]張仍奎, “合金元素與電解液對LaNi5系儲氫合金之電化學性質影響研究”, 國立成功大學, 碩士論文, 2000.
[24]Z.M. Wang, C.Y.V. Li, S.L.I. Chan, “Effect of electrolyte on electrochemical characteristics of MmNi3.55Co0.72Al0.3Mn0.43 alloy electrode for hydrogen storage,” Int. J. Hydrogen Energy, 34 (2009) 5422-5428.
[25]P. Kritzer, J.A. Cook, “Nonwovens as separators for alkaline batteries,” J. Electrochem. Soc., 154 (2007) A481- A494.
[26]V. Pralong, N.S. Epree, S. Taunier, B. Beaudoin, T. Jamin, A. Delahaye-Vidal, “Self-discharge of the nickel electrode in presence of hydrogen: II. electrochemical approach,” J. Electrochem. Soc., 146 (1999) 2382-2386.
[27]M.L. Soria, J. Chaco´n, J.C. Herna´ndez, D. Moreno, A. Ojeda, “Nickel metal hydride batteries for high power applications,” J. Power Sources, 96 (2001) 68-75.
[28]Y. Liu, Y. Cao, L. Huang, M. Gao, H. Pan , “Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries,” J. Alloys Comp., 509 (2011) 675-686.
[29]F. Feng, M. Geng, D. O. Northwood , “Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review,” Int. J. Hydrogen Energy, 26 (2001) 725-734.
[30]A. Zuttel, D. Chartouni, K. Gross, P. Spatz, M. Bachler, F. Lichtenberg, “Relationship between composition, volume expansion and cyclic stability of AB5-type metal hydride electrodes,” J. Alloys Comp., 253-254 (1997) 626-628.
[31]P. Gifford, J. Adams, D. Corrigan, S. Venkatesan, “Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles,” J. Power Sources, 80 (1999) 157-163.
[32]F. Haschka, W. Warthmann, G. Benczur-Urmossy, “Alkaline batteries for hybrid and electric vehicles,” J. Power Sources, 72 (1998) 32-36.
[33]J. Kleperis, G. Wojcik, A. Czerwinski, J. Skowronski, M. Kopczyk, M. Beltowska
-Brzenska, “Electrochemical behavior of metal hydrides,” J. Solid State Electrochem., 5 (2001) 229-249.
[34]P.H.L. Notten, P. Hokkeling, “Double-Phase Hydride Forming Compounds: A New Class of Highly Electrocatalytic Materials,” J. Electrochem. Soc., 138 (1991) 1877-1885.
[35]H.H. Lee, K.Y. Lee, J.Y. Lee, “The hydrogenation characteristics of Ti-Zr-V-Mn-Ni C14 type Laves phase alloys for metal hydride electrodes,” J. Alloys Comp., 253-254 (1997) 601-604.
[36]J.H. Jung, B.H. Liu, J.Y. Lee, “Activation behavior of Zr0.7Ti0.3Cr0.3Mn0.3V0.4Ni alloy electrode modified by the hot-charging treatment,” J. Alloys Comp., 264 (1998) 306-310.
[37]Y. Liu, H. Pan, M. Gao, H. Miao, Y. Lei, Q. Wang, “Function of Al on the cycling behavior of the La-Mg-Ni-Co-type alloy electrodes,” Int. J. Hydrogen Energy, 33 (2008) 124-133.
[38]J.J. Reilly, G.D. Adzic, J.R. Johnson, T. Vogt, S. Mukerjee, J. McBreen, “The correlation between composition and electrochemical properties of metal hydride electrodes,” J. Alloys Comp., 293-295 (1999) 569-582.
[39]M. Tliha, H. Mathlouthi, J. Lamloumi, A. Percheron-Guegan, “AB5-type hydrogen storage alloy used as anodic materials in Ni-MH batteries,” J. Alloys Comp., 436 (2007) 221-225.
[40]J.H. Woo, K.S. Lee, “Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying,” J. Electrochem. Soc., 146 (1999) 819-823.
[41]F.J. Liu, S. Suda, “Properties and characteristics of fluorinated hydriding alloys,” J. Alloys Comp., 231 (1995) 742-750.
[42]C. Iwakura, S. Nohara, H. Inoue, Y. Fukumoto, “Surface modification of MgNi alloy with graphite by ball-milling for use in nickel-metal hydride batteries,” Chem. Commun., 15 (1996) 1831-1832.
[43]T. Kohno, M. Kanda, “Effect of Partial Substitution on Hydrogen Storage properties of Mg2Ni Alloy,” J. Electrochem. Soc., 144 (1997) 2384-2388.
[44]M. Anik, G. Özdemir, N. Küçükdeveci, B. Baksan, “Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy,” Int. J. Hydrogen Energy, 36 (2011) 1568-1577.
[45]A. Ledovskikh, E. Verbitskiy, A. Ayeb, P.H.L. Notten, “Modelling of rechargeable NiMH batteries,” J. Alloys Comp., 356-357 (2003) 742-745.
[46]T.K. Ying, X.P. Gao, W.K. Hu, F. Wu, D. Noreus, “Studies on rechargeable Ni-MH batteries,” Int. J. Hydrogen Energy, 31 (2006) 525-530.
[47]H.G. Pan, J.X. Ma, C.S. Wang, S.A. Chen, X.H. Wang, C.P. Chen, Q.D. Wang, “Studies on the electrochemical properties of MlNi4.3−xCoxAl0.7 hydride alloy electrodes,” J. Alloys Comp., 293-295 (1999) 648-652.
[48]S. Bliznakov, E. Lefterova, N. Dimitrov, K. Petrov, A. Popov, “A study of the Al content impact on the properties of MmNi4.4−xCo0.6Alx alloys as precursors for negative electrodes in NiMH batteries,” J. Power Sources, 176 (2008) 381-386.
[49]K. Kadir, T. Sakai, I. Uehara, “Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure,” J. Alloys Comp., 302 (2000) 112-117.
[50]J. Chen, H.T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, M. Haruta, “Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure,” J. Alloys Comp., 302 (2000) 304-313.
[51]T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamanoto, M. Kands, “Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14,” J. Alloys Comp., 311 (2000) L5-L7.
[52]B. Liao, Y.Q. Lei, G.L. Lu, L.X. Chen, H.G. Pan, Q.D. Wang, “The electrochemical properties of LaxMg3−xNi9 (x=1.0–2.0) hydrogen storage alloys,” J. Alloys Comp., 356-357 (2003) 746-749.
[53]Y.L. Du, X.G. Yang, Q.A. Zhang, Y.Q. Lei, M.S. Zhang, “Phase structures and electrochemical properties of the Laves phase hydrogen storage alloys Zr1−xTix(Ni0.6Mn0.3V0.1Cr0.05)2,” Int. J. Hydrogen Energy, 26 (2001) 333-337.
[54]R. Parimala, M.V. Ananth, S. Ramaprabhu, M. Raju, “Effect of electroless coating of Cu, Ni and Pd on ZrMn0.2V0.2Fe0.8Ni0.8 alloy used as anodes in Ni-MH batteries,” Int. J. Hydrogen Energy, 29 (2004) 509-513.
[55]D.L. Sun, Y.Q. Lei, W.H. Liu, J.J. Jiang, J. Wu, Q.D. Wang, “The relation between the discharge capacity and cycling number of mechanically alloyed MgxNi100−x amorphous electrode alloys,” J. Alloys Comp., 231 (1995) 621-624.
[56]H. Inoue, S. Hazuia, S. Nohara, C. Iwakura, “Preparation and electrochemical characterization of Mg2Ni alloys with different crystallinities,” Electrochim. Acta, 43 (1998) 2221-2224.
[57]Y. Zhang, Y.Q. Lei, L.X. Chen, J. Yuan, Z.H. Zhang, Q.D. Wang, “The effect of partial substitution of Zr for Ti on the electrochemical properties and surface passivation film of Mg35Ti10−xZrxNi55 (x=1, 3, 5, 7, 9) electrode alloys,” J. Alloys Comp., 337 (2002) 296-302.
[58]C. Rongeat, M.H. Grosjean, S. Ruggeri, M. Dehmas, S. Bourlot, S. Marcotte, L. Roue, “Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries,” J. Power Sources, 158 (2006) 747-753.
[59]M. Tsukahara, K. Takahashi, T. Mishima, T. Sakai, H. Miyamura, N. Kuriyama, J. Uehara, “Metal hydride electrodes based on solid solution type alloy TiV3Nix (0 x 0.75),” J. Alloys Comp., 226 (1995) 203-207.
[60]H.G. Pan, Y.F. Zhu, M.X. Gao, Y.F. Liu, R. Li, Y.Q. Lei, Q.D. Wang, “XRD study of the hydrogenation and dehydrogenation process of the two different phase components in a Ti–V-based multiphase hydrogen storage electrode alloy,” J. Alloys Comp., 370 (2004) 254-260.
[61]X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, “Influence of Fe addition on hydrogen storage characteristics of Ti–V-based alloy,” Int. J. Hydrogen Energy, 31 (2006) 1176-1181.
[62]Y.F. Liu, S.S. Zhang, R. Li, M.X. Gao, K. Zhong, H. Miao, H.G. Pan, “Electrochemical performances of the Pd-added Ti-V-based hydrogen storage alloys,” Int. J. Hydrogen Energy, 33 (2008) 728-734.
[63]M. Matsuoka, K. Asai, Y. Fukumoto, C. Iwakura, “Electrochemical characterization of surface-modified negative electrodes consisting of hydrogen storage alloys,” J. Alloys Comp., 192 (1993) 149-151.
[64]M. Ikoma, K. Komori, S. Kaida, C. Iwakura, “Effect of alkali-treatment of hydrogen storage alloy on the degradation of Ni/MH batteries,” J. Alloys Comp., 284 (1999) 92-98.
[65]C. Iwakura, W.K. Choi, S.G. Zhang, H. Inoue, “Mechanism of hydrogen absorption in Zr0.9Ti0.1Ni1.1Co0.1Mn0.6V0.2 alloy during alkali treatment with a boiling 6 M KOH solution,” Electrochim. Acta, 44 (1999) 1677-1679.
[66]W. Chen, “Effects of surface treatments of MlNi4Co0.6Al0.4 hydrogen storage alloy on the activation, charge/discharge cycle and degradation of Ni/MH batteries,” J. Power Sources, 92 (2001) 102-107.
[67]R. Tang, Y.N. Liu, C.C. Zhu, J.W. Zhu, G. Yu, “Effect of Al substitution for Co on the hydrogen storage characteristics of Ml0.8Mg0.2Ni3.2Co0.6−xAlx (x=0–0.6) alloys,” Intermetallics, 14 (2006) 361-366.
[68]Y.H. Zhang, B.W. Li, H.P. Ren, Z.W. Wu, X.P. Dong, X.L. Wang, “Influences of the substitution of Fe for Ni on structures and electrochemical performances of the as-cast and quenched La0.7Mg0.3Co0.45Ni2.55−xFex (x = 0–0.4) electrode alloys,” J. Alloys Comp., 460 (2008) 414-420.
[69]Y.H. Zhang, B.W. Li, H.P. Ren, Y. Cai, X.P. Dong, X.L. Wang, “Effects of substituting Ni with Cu on the microstructures and electrochemical characteristics of the as-cast and quenched La0.7Mg0.3Ni2.55-xCo0.45Cux (x=0–0.4) electrode alloys,” Int. J. Hydrogen Energy, 32 (2007) 3420-3426.
[70]H.G. Pan, Q.W. Jin, M.X. Gao, Y.F. Liu, R. Li, G.L. Lu, Y.Q. Lei, “Effect of the cerium content on the structural and electrochemical properties of the La0.7−xCexMg0.3Ni2.875Mn0.1Co0.525 (x=0–0.5) hydrogen storage alloys,” J. Alloys Comp., 373 (2004) 237-245.
[71]H.G. Pan, X.F. Wu, M.X. Gao, N. Chen, Y.J. Yue, Y.Q. Lei, “Structure and electrochemical properties of La0.7Mg0.3Ni2.45-xCo0.75Mn0.1Al0.2Wx (x=0–0.15) hydrogen storage alloys,” Int. J. Hydrogen Energy, 31 (2006) 517-523.
[72]X.L. Wang, Y.H. Zhang, D.L. Zhao, X.P. Dong, S.H. Guo, G.Q. Wang, “Effects of Cr addition on the microstructures and electrochemical performances of La–Mg–Ni system (PuNi3-type) hydrogen storage alloy,” J. Alloys Comp., 446-447 (2007) 625-629.
[73]T. Ozaki, H.B. Yang, T. Iwaki, S. Tanase, T. Sakai, H. Fukunaga, N. Matsumoto, Y. Katayama, T. Tanaka, T. Kishimoto, M. Kuzuhara, “Development of Mg-containing MmNi5-based alloys for low-cost and high-power Ni-MH battery,” J. Alloys Comp., 408-412 (2006) 294-300.
[74]H.B. Yang, T. Sakai, T. Iwaki, S. Tanase, H. Fukunaga, “Development of Mg-added MmNi5-based alloys with low Co content for high power applications,” J. Electrochem. Soc., 150 (2003) A1684-A1688.
[75]N. Cui, B. Luan, H.K. Liu, H.J. Zhao, S.X. Dou, “Characteristics of magnesium-based hydrogen-storage alloy electrodes,” J. Power Sources, 55 (1995) 263-267.
[76]C.K. Lin, S.M. Huang, Y.H. Jhang, “Effect of cyclic hydriding-dehydriding reactions of Mg2Ni alloy on the expansion deformation of a metal hydride storage vessel,” J. Alloys Comp., 509 (2011) 7162-7167.
[77]I. Saldan, R. Burtovyy, H.W. Becker, V. Ader, C. Woll, “Ti-Ni alloys as MH electrodes in Ni-MH accumulators,” Int. J. Hydrogen Energy, 33 (2008) 7177-7184.
[78]T. Abe, T. Tachikawa, Y. Hatano, K. Watanabe, “Electrochemical behavior of amorphous MgNi as negative electrodes in rechargeable Ni–MH batteries,” J. Alloys Comp., 330-332 (2002) 792-795.
[79]N. Cui, B. Luan, H.K. Liu, S.X. Dou, “Discharge behavior of Mg2Ni-type hydrogen-storage alloy electrodes in 6M KOH solution by electrochemical impedance spectroscopy,” J. Power Sources, 63 (1996) 209-214.
[80]T. Akiyama, H. Isogai, J. Yagi, “Hydriding combustion synthesis for the production of hydrogen storage alloy,” J. Alloys Comp., 252 (1997) L1-L4.
[81]Y. Zhu, C. Yang, J. Zhu, L. Li, “Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys,” J. Alloys Comp., 509 (2011) 5309-5314.
[82]L. Li, T. Akiyama, T. Kabutomori, K. Terao, J. Yagi, “Hydriding and dehydriding behavior of the product in hydriding combustion synthesis of Mg2NiH4,” J. Alloys Comp., 287 (1999) 98-103.
[83]I. Saita, L. Li, K. Saito, T. Akiyama, “Hydriding combustion synthesis of Mg2NiH4,” J. Alloys Comp., 356-357 (2003) 490-493.
[84]D. Sun, H. Enoki, F. Gingl, E. Akiba, “New approach for synthesizing Mg-based alloys,” J. Alloys Comp., 285 (1999) 279-283.
[85]T. Akiyama, H. Isogai, J.I. Yagi, “Reaction rate of combustion synthesis of an intermetallic compound,” Powder Technology, 95 (1998) 175-181.
[86]L. Lu, M.O. Lai, “Formation of new materials in the solid state by mechanical alloying,” Materials and Design, 16 (1995) 33-39.
[87]C.C. Koch, J.D. Whittenberger, “Mechanical milling/alloying of intermetallics,” Intermetallics, 4 (1996) 339-355.
[88]L. Zaluski, A. Zaluska, J.O. Strom-Olsen, “Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying,” J. Alloys Comp., 217 (1995) 245-249.
[89]A.K. Singh, A.K. Singh, O.N. Srivastava, “On the synthesis of the Mg2Ni alloy by mechanical alloying,” J. Alloys Comp., 227 (1995) 63-68.
[90]L. Aymard, M. Ichitsubo, K. Uchida, E. Sedreta, F. Ikazaki, “Preparation of Mg2Ni base alloy by the combination of mechanical alloying and heat treatment at low temperature,” J. Alloys Comp., 259 (1997) L5-L8.
[91]C.W. Hsu, S.L. Lee, R.R. Jeng, J.C. Lin, “Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process,” Int. J. Hydrogen Energy, 32 (2007) 4907-4911.
[92]L.B. Wang, J.B. Wang, H.T. Yuan, Y.J. Wang, Q.D. Li, “An electrochemical investigation of Mg2-xAlxNi (0≦x≦0.6) hydrogen storage alloys,” J. Alloys Comp., 385 (2004) 304-308.
[93]J. Chen, P. Yao, D.H. Bradhurst, S.X. Dou, H.K. Liu, “Mg2Ni-based hydrogen storage alloys for metal hydride electrodes,” J. Alloys Comp., 293-295 (1999) 675-679.
[94]M. Anik, “Improvement of the electrochemical hydrogen storage performance of Mg2Ni by the partial replacements of Mg by Al, Ti and Zr,” J. Alloys Comp., 486 (2009) 109-114.
[95]J.J. Jiang, M. Gasik, “An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys,” J. Power Sources, 89 (2000) 117-124.
[96]M. Anik, H. Gasan, S. Topcu, I. Akay, N. Aydinbeyli, “Electrochemical hydrogen storage characteristics of Mg1.5Al0.5-xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) alloys synthesized by mechanical alloying,” Int. J. Hydrogen Energy, 34 (2009) 2692-2700.
[97]Y.H. Zhang, S.H. Guo, Y. Qi, X. Li, Z.H. Ma, Y. Zhang, “Enhanced electrochemical characterisitics of as-spun nanocrystalline and amorphous Mg2Ni-type alloy electrodes,” J. Alloys Comp., 506 (2010) 749-756.
[98]Y. Takahashi, H. Yukawa, M. Morinaga, “Alloying effects on the electronic structure of Mg2Ni intermetallic hydride,” J. Alloys Comp., 242 (1996) 98-107.
[99]Y.H. Zhang, D.L. Zhao, B.W. Li, H.P. Ren, S.H. Guo, X.L. Wang, “Electrochemical hydrogen storage characteristics of nanocrystalline Mg20Ni10-xCux (x=0-4) alloys prepared by melt-spinning,” J. Alloys Comp., 491 (2010) 589-594.
[100]M.V. Simicic, M. Zdujic, R. Dimitrijevic, L. Nikolic-Bujanovic, N.H. Popovic, “Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying,” J. Power Sources, 158 (2006) 730-734.
[101]M.Y. Song, S.N. Kwon, J.S. Bae, S.H. Hong, “Hydrogen-storage properties of Mg-23.5Ni-(0 and 5) Cu prepared by melt spinning and crystallization heat treatment,” Int. J. Hydrogen Energy, 33 (2008) 1711-1718.
[102]S.S. Han, H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, “Improvement of electrode performances of Mg2Ni by mechanical alloying,” J. Alloys Comp., 330-332 (2002) 841-845.
[103]C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, 46 (2001) 1-184.
[104]H. Yuan, Q. Li, H. Song, Y. Wang, J. Liu, “Electrochemical characteristics of Mg2Ni-type alloys prepared by mechanical alloying,” J. Alloys Comp., 353 (2003) 322-326.
[105]W. Liu, H. Wu, Y. Lei, Q. Wang, J. Wu, “Amorphization and electrochemical hydrogen storage properties of mechanically alloyed Mg-Ni,” J. Alloys Comp., 252 (1997) 234-237.
[106]H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, “The surface state of nanocrystalline and amorphous Mg2Ni alloys prepared by mechanical alloying,” J. Alloys Comp., 313 (2000) 258-262.
[107]M. Anik, “Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying,” J. Alloys Comp., 491 (2010) 565-570.
[108]N. Drenchev, T. Spassov, S. Bliznakov, “Influence of tin on the electrochemical and gas phase hydrogen sorption in Mg2-xSnxNi (x = 0, 0.1, 0.3),” J. Alloys Comp., 450 (2008) 288-292.
[109]M. Jurczyk, L. Smardz, I. Okonska, E. Jankowska, M. Nowak, K. Smardz, “Nanoscale Mg-based materials for hydrogen storage,” Int. J. Hydrogen Energy, 33 (2008) 374-380.
[110]J. Chen, P. Yao, D.H. Bradhurst, S.X. Dou, H.K. Liu, “Mg2Ni-based hydrogen storage alloys for metal hydride electrodes,” J. Alloys Comp., 293-295 (1999) 675-679.
[111]A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, M. Jurczyk, “Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al),” J. Alloys Comp., 364 (2004) 283-288.
[112]M. Jurczyk, L. Smardz, A. Szajek, “Nanocrystalline materials for Ni–MH batteries,” Mater. Sci. Eng. B, 108 (2004) 67-75.
指導教授 林志光(Chih-kuang Lin) 審核日期 2011-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明