博碩士論文 953403041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:54.172.234.236
姓名 許哲瑋(Che-wei Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究
(Study on hydrogenation properties of Mg-based intermetallic compounds produced by Isothermal Evaporation Casting Process)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響★ 微量Sc對A356鑄造鋁合金機械性質之影響
★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 退火溫度對AA5083-H15鋁鎂合金沿晶腐蝕與應力腐蝕性質之影響★ Mn對含鐵A356鑄造鋁合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鎂基儲氫合金因具有儲氫量高、質量輕、原料成本低廉之優點而被視為相當有潛力之儲氫合金系統,但由於鎂蒸氣壓大,且鎂(649℃)與在儲氫應用上所需搭配之元素如鎳(1455℃)、銅(1085℃)等元素其熔點差異甚大,因此傳統熔煉法無法成功熔配出大量高純度鎂基儲氫合金,如Mg2Ni、Mg2Cu等合金。因此本研究重點在於開發恆溫蒸發熔煉鑄造製程,進行鎂基介金屬化合物量產製程開發,於800℃下進行鎂與鎳熔湯攪拌,使其形成均質鎂鎳熔湯,其後進行降溫至兩相區持溫,持溫過程因鎂蒸氣壓高之特性,使其自行蒸發,導致液相組成往富鎳方向偏移,其後提高溫度至720℃,加速其蒸發速率,最後達到Mg2Ni包晶反應線,僅殘留均質Mg2Ni固體。所生產之Mg2Ni合金經由XRD與ICP分析,確認為高純度Mg2Ni合金。其後粉碎並過篩所生產之Mg2Ni塊材,進行不同初始粒徑對活化性質之測試,而其充分氫化後之Mg2Ni合金於300℃下可達3.58wt.%之儲放氫量,接近其理論值3.6wt.%,並施以極限吸放氫循環測試發現Mg2Ni合金吸氫極限溫度約在140℃時仍可吸收3wt.%之氫氣,而放氫極限溫度約為217℃,尚有0.55wt.%之放氫量。
本研究進一步利用銅元素取代鎳元素,合成Mg-Cu-Ni三元合金,除驗證恆溫蒸發熔煉鑄造製程於熔配過程添加第三元素之穩定度外,亦進行氫化平台壓力改質研究及三元Mg-Cu-Ni合金吸放氫過程相變化之觀察,提出固溶侷限現象,解釋固溶元素對氫化平台壓力提升階段之模型,並利用此模型之概念進一步觀察Mg-Ni-Ag三元合金之微結構,由銀元素固溶量進行PCI平台區壓力變化階段之預測與驗證,嘗試建立合金微結構與PCI氫化平台壓之關係。
最後,則綜合鎂基儲氫合金之特性,透過回收利用恆溫蒸發熔煉鑄造製程所釋放之鎂蒸氣,鍍附於鎳網結構之表面,合成新型鎳鎂織構吸氫材,其結果顯示此特殊結構之鎳鎂織構可有效提升氫原子之擴散,降低吸放氫溫度,其反應機制可做為後續新型態儲氫母材開發基礎,深具鎂基低溫儲氫材開發潛力。
摘要(英) Mg-based hydrogen storage alloys are attractive materials for hydrogen storage because due to their high hydrogen storage capacity, light density and low cost. Unfortunately, most studies indicate that it is difficult to produce Mg2Ni alloy with the accurately desirable composition by conventional melting methods because of the large differences in melting points and vapor pressures between Mg(649℃)and Ni(1455℃). Therefore, an innovative method, Isothermal Evaporation Casting Process (IECP), is developed to produce Mg2Ni alloy for mass production in this study. In the past, high vapor pressure of Mg was considered as a disadvantage for producing pure Mg2Ni alloy. However, this characteristic was used to develop a refinement procedure to separate primary Mg2Ni alloy from Mg/Mg2Ni eutectic matrix. Characteristics of as-cast specimens measured by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and electron probe X-ray microanalyzer (EPMA) reveal that mass production of Mg2Ni alloy was successfully fabricated by IECP.
A series experiments in hydrogenation properties of as-prepared Mg2Ni are also investigated. It is found that he well-activated Mg2Ni alloy achieves 3.58wt.% at 300℃ corresponding to the theoretical hydrogen storage capacity of Mg2NiH4 hydride. In addition, to research the modification of ternary Mg-Ni based alloys, the Mg2Cu1-xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) alloys are also fabricated by IECP. The XRD analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered-orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 300 ℃ under 50 atm H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg-Cu-Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg-Cu and Mg-Ni alloys.
The model of constriction phenomenon induced by 3rd additives is proposed to explain that the hydrogen diffusion process may have on the lattice expansion behavior, as opposed to that of the reactions taking place on the solute atom and multi-hydrides, is an important factor to consider in determining the kinetic parameters of hydrogen movement in metal lattice. Following this model, the correlation of the plateau in PCI and the microstructure of hydrogen storage alloy may be identified clearly.
Finally, this study demonstrated the feasibility of a novel Mg vapor deposition treatment on Ni foam to synthesize a Ni-Mg texture-like structure as a new type of hydrogen absorber. Energy dispersive spectrometry (EDS) yielded an estimative value of the weight percent ratio of Ni and Mg of 71.8 and 20.5 in as-prepared Ni-Mg texture-like structure. The microstructural changes were also characterized by XRD and the formed hydride tetragonal-MgH2 was confirmed. The unique combination of large surface area of catalyst (Ni) and hydrogen acceptor (Mg) reduced the hydrogenation and dehydrogenation temperatures and performed the capability of reversible hydrogen storage capacity up to 0.72 wt.% H2 at 25℃. Ni-Mg texture-like structure achieved significant hydriding-dehydriding performances at lower temperature than traditional Mg-based hydrogen storage alloys. A possible hydrogen storage mechanism was also discussed where the catalytic Ni foam with large surface area was shown to be a vital factor in improving hydriding and dehydriding kinetics.
關鍵字(中) ★ 鎂基介金屬
★ 金屬氫化物
★ 儲氫合金
★ 恆溫蒸發熔煉鑄造製程
關鍵字(英) ★ Mg-based intermetallic compound
★ metal hydride
★ Hydrogen storage alloys
★ Isothermal Evaporation Casting Process
論文目次 中文摘要-------------------------------------------------------------------------i
Abstract-------------------------------------------------------------------------ii
Contents-------------------------------------------------------------------------v
Figure List----------------------------------------------------------------------vii
Table List-----------------------------------------------------------------------x
Chapter 1 Introduction and motivation--------------------------------------------1
1.1 Background-------------------------------------------------------------------1
1.2 Motivation-------------------------------------------------------------------1
1.3 Overview of this study-------------------------------------------------------3
Chapter 2 Background of hydrogen storage alloys----------------------------------4
2.1 Introduction on hydrogen storage alloys----------------------------------4
2.2 Production methods and hydrogen storage properties of Mg-Ni alloy--------9
Chapter 3 Experimental procedures-----------------------------------------------18
3.1 The concept of Isothermal Evaporation Casting Process (IECP)-------18
3.2 Preparation procedure of Mg-based intermetallic compounds------------21
3.3 Mg vapor deposition treatment derived from IECP-------------------------23
3.4 Analysis methods and instrumentations-----------------------------------25
Chapter 4 Results and discussions-----------------------------------------------27
4.1 Observations of Mg2X(X=Ni, Cu, Si and Sn)-------------------------------27
4.1.1 Macrostructure of as-prepared Mg2X(X=Ni, Cu, Si and Sn)-----------27
4.1.2 XRD and ICP examinations of Mg2X(X=Ni, Cu, Si and Sn)--------------28
4.1.3 Pre-hydrogenation test of Mg2X(X=Ni, Cu, Si and Sn)--------------31
4.1.4 Microstructure of Mg2Ni alloy ------------------------------------ 35
4.2 Hydrogenation properties of Mg2Ni---------------------------------------37
4.2.1 Effects of initial particle sizes on activation property of Mg2N---37
4.2.2 The kinetics and PCI properties of the Mg2Ni alloy----------------44
4.2.3 The utmost reaction temperature tests of the Mg2Ni alloy----------47
4.3 Effect of Cu on hydrogenation properties of Mg2Ni-----------------------56
4.3.1 Structure identification of as-cast ternary Mg-Cu-Ni-------------56
4.3.2 The kinetic and PCI properties of the well-activated Mg-Cu-Ni---58
4.3.3 Model of Constriction phenomenon induced by 3rd additives--------65
4.4 Ni-Mg texture-like structure hydrogen absorber--------------------------73
4.4.1 Morphological characterization of Ni-Mg TLS------------------------73
4.4.2 Hydrogen absorption and desorption properties of Ni-Mg TLS---------75
4.4.3 Hydrogen storage mechanism of Ni-Mg TLS----------------------------77
Chapter 5 Conclusions and future works------------------------------------------79
5.1 General conclusions---------------------------------------------------------79
5.2 Suggested future works--------------------------------------------------82
References----------------------------------------------------------------------83
參考文獻 [1] Eberle, U.; Arnold, G.; von Helmolt, R.” Hydrogen storage in
metal–hydrogen systems and their derivatives” Journal of Power Sources vol.2, 2006, p.p.456-461
[2] A. Seiler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel and F. Stucki” Surface analysis of Mg2Ni---Mg, Mg2Ni and Mg2Cu” Journal of the Less Common Metals vol.73, 1980, p.p.193-199
[3] Li, Qian; Chou, Kuo-Chih; Lin, Qin; Jiang, Li-Jun; Zhan, Feng” Hydrogen absorption and desorption kinetics of Ag–Mg–Ni alloys” International Journal of Hydrogen Energy vol.29, 2004, p.p.843-849
[4] G. Sandrock ” A panoramic overview of hydrogen storage alloys from a gas reaction point of view” Journal of Alloys and Compounds vol.293, 1999, p.p.877-881
[5] S. Ono, Y. Ishido, E. Akiba, K. Jindo, Y. Sawada, I. Kitagawa and T. Kakutani” The effect of CO2, CH4, H2O and N2 on Mg---Ni alloys as hydrogen transporting media” International Journal of Hydrogen Energy vol.11, 1986, p.p.381-387
[6] Varin, R.A.; Czujko, T.” The effect of atomic volume on the hydrogen storage capacity of hexagonal metals/intermetallics” Scripta Materialia vol.46, 2002, p.p.531-535
[7] Malinova, T.; Guo, Z.X.”Artificial neural network modelling of hydrogen storage properties of Mg-based alloys” Materials Science and Engineering A vol.365, 2004, p.p.219-227
[8] S. Bouaricha, J.P. Dodelet, D. Guay, J. Hout, S. Boily, R. Schulz. “Effect of carbon-containing compounds on the hydriding behavior of nanocrystalline Mg2Ni”. J. Alloys Compd. Vol.307, 2000, p.p.226-233
[9] N. Cui, B. Luan, H.K. Liu, H.J. Zhao, S.X. Dou. “Characteristics of magnesium-based hydrogen-storage alloy electrodes”. J. Power Sources vol.55, 1995, p.p.263-267
[10] Dalin Sun, Hirotoshi Enoki, Franz Gingl, Etsuo Akiba. “New approach for synthesizing Mg-based alloys”. J. Alloys Compd. Vol.285, 1999, p.p.279-283
[11] Y. Tsushio, H. Enoki, E. Akiba, “Energy distribution of hydrogen sites for
MgNi0.86M10.03 (M1=Cr, Fe, Co, Mn) alloys desorbing hydrogen at low
temperature”, J. Alloys Comp. vol.285, 1999, p.p.298-302
[12] K.J. Gross, P. Spatz, A. Zuttel, L. Schlapbach, Mechanically milled Mg composites for hydrogen storage the transition to a steady state composition, J. Alloys Comp. vol.240, 1996, p.p.206-210
[13] P. Wang, A.M. Wang, H. Zhang, B. Ding, Z. Hu, “Hydriding properties of a
mechanically milled Mg–50 wt.% ZrFe1.4Cr0.6 composite”, J. Alloys Comp. vol.297, 2000, p.p.240-244
[14] M. Bououdina, D. Grant, G. Walker, “Review on hydrogen absorbing
materials-structure, microstructure, and thermodynamic properties”, Int. J.
Hydrogen Energy vol.31, 2006, p.p.177-181
[15] H. Shao, Y. Wang, H. Xu, X. Li, “Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy”, J. Solid State Chem. Vol.178, 2005, p.p.2211-2216
[16] C. Milanese, A. Girella, G. Bruni, V. Berbenni, P. Cofrancesco, A. Marini, M. Villa, P. Matteazzi, “Hydrogen storage in magnesium-metal mixtures: reversibility, kinetic aspects and phase analysis”, J. Alloys Comp. vol.465, 2008, p.p.396-403
[17] C.K. Lin, C.K. Wang, P.Y. Lee, H.C. Lin, K.M. Lin, “The effect of Ti additions on the hydrogen absorption properties of mechanically alloyed Mg2Ni powders”, Mater. Sci. Engrg. A vol.449, 2007, p.p.1102-1106
[18] A. Ebrahimi-Purkani, S.F. Kashani-Bozorg, “Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing”, J. Alloy. Compd. Vol.456, 2008, p.p.211-215
[19] F.C. Gennari, M.R. Esquivel, “Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni”, J. Alloy. Compd. Vol.459, 2008, p.p.425-432
[20] G. Sandrock ” A panoramic overview of hydrogen storage alloys from a gas reaction point of view” Journal of Alloys and Compounds vol.293, 1999, p.p.877-883
[21] Kolachev, B. A.; Ilyin, A. A.” The structural outlines of hydrogen storage alloys” International Journal of Hydrogen Energy 21(1996)975-980
[22] L. Schlapbach, A. Zuttel, ” Hydrogen-storage materials for mobile applications” Nature vol.414, 2001, p.p.353-359
[23] Lambert, “ Investigation of hydriding properties of LaNi4.8Sn0.2, LaNi4.27Sn0.24 and La0.9Gd0.1Ni5 after thermal cycling and aging“, Journal of alloys and Compounds vol.187, 1992, p.p.113-118
[24] G. Sandrock, G. Thomas, “The IEA/DOE/SNL on-line hydride databases”, Applied Physics A-Materials Science & Processing vol.72, 2001, p.p.153-159
[25] W. Luo, E. Ronnebro, “Towards a viable hydrogen storage system for transportation application”, Journal of Alloys and Compounds vol.404, 2005, p.p.392-397
[26]A. Seiler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel F. Stucki “Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu” Journal of the Less-Common Metals vol.73, 1980, p.p.193-199
[27]C.R. Clark, C. Wright, C. Suryanarayana, E.G. Baburaj, F.H. Froes, “Synthesis of Mg2X (X = Si, Ge, or Sn) intermetallics by mechanical alloying”, Materials Letters vol.33, 1997, p.p.71-75
[28]G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm(Tm = Ti, V, Mn, Fe and Ni) systems”, Journal of Alloys and Compounds vol.292, 1999, p.p.247-252
[29]Hao Gu, Yunfeng Zhu, Liquan Li, “Characterization of hydrogen storage properties of Mg-30 wt.% Ti1.0V1.1Mn0.9 composite”, Journal of Alloys and Compounds vol.424, 2006, p.p.382-386
[30]Yongfeng Liu, Zhitao Xiong, Jianjiang Hu, Guotao Wu, Ping Chen, Kenji Murata, Ko Sakata, ”Hydrogen absorption/desorption behaviors over a quaternary Mg–Ca–Li–N–H system, Journal of Power Sources vol.159, 2006, p.p.135-139
[31]Toyoto Sato, Helen Blomqvist, Dag Noreus, “Attempts to improve Mg2Ni hydrogen storage by aluminium addition”, Journal of Alloys and Compounds vol.356, 2003, p.p.494-496
[32]Y. Tsushioa, H. Enokib, E. Akibab, “Energy distribution of hydrogen sites for MgNi0.86M10.03(M1=Cr,Fe,Co,Mn)alloys desorbing hydrogen at low temperature”, Journal of Alloys and Compounds vol.285, 1999, p.p.298-301
[33]J.J. Reilly, R.H. Wiswall, “The reaction of hydrogen with alloys of magnesium and copper”, Inorganic Chemistry vol.7, 1967, p.p.2220-2223
[34]Huaiyu Shao, Yuntao Wang, Hairuo Xu, Xingguo Li, “Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy, Journal of Solid State Chemistry vol.178, 2005, p.p.2211-2217
[35] M. Jurczyk , I. Okonska, W. Iwasieczko, E. Jankowska, H. Drulis, “Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials”, Journal of Alloys and Compounds vol.429, 2007, p.p.316-320
[36] K. Ikeda1, S. Orimo, A. Zuttel, L. Schlapbach, H. Fujii, “Cobalt- and copper-substitution effects on thermal stabilities and Hydriding properties of amorphous MgNi, Journal of Alloys and Compounds vol.280, 1998, p.p.279-283
[37] Liquan Li, Itoko Saita, Katsushi Saito, Tomohiro Akiyama, “Hydridin combustion synthesis of hydrogen storage alloys of Mg–Ni–Cu system”, Intermetallics vol.10, 2002, p.p.927-932
[38]J. P. Darnaudery, M. Pezat, B. Darri , “Influence de la substitution du cuivre au nickel dans Mg2Ni sur le stockage de L’hydrogene, Journal of the Less- Common Metals vol.92, 1983, p.p.199-205
[39]P. Selvam, B. Viswanathan, C. S. Swamy, V. Srinivasan, “Studies of the thermal characteristics of hydrogen of Mg, Mg2Ni, Mg2Cu and Mg2Ni1-xMx (M = Fe, Co, Cu or Zn;0 < x < 1)”, International Journal of Hydrogen Energy vol.13, 1988, p.p.87-94
[40]G. Liang, S. Boily, J. Huot, Van Neste, R.Schulz, “Hydrogen storage properties of nanocrystalline Mg2NixCu1-x synthesized by mechanical alloying”, Materials Science Forum vol.269, 1998, p.p.1049-1053
[41] Benjamin J.S. Metallurgical Transactions vol.10, 1970, p.p.2943-2948
[42] Sundaresan R.; Frose F.H. Journal of Metals vol.8, 1987, p.p.22-27
[43] Aymard, L.; Ichitsubo, M.; Uchida, K.; Sekreta, E.; Ikazaki, F.” Preparation of Mg2Ni base alloy by the combination of mechanical alloying and heat treatment at low temperature” Journal of Alloys and Compounds vol.259, 1997, p.p.15-18
[44] Zaluska, A.; Zaluski, L.; Ström-Olsen, J.O.” Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni” Journal of Alloys and Compounds vol.289, 1999, p.p.197-206
[45] Sun, Dalin; Enoki, Hirotoshi; Gingl, Franz; Akiba, Etsuo” New approach for synthesizing Mg-based alloys” Journal of Alloys and Compounds vol.285, 1999, p.p.279-283
[46] Liang, G.; Boily, S.; Huot, J.; Van Neste, A.; Schulz, R.” Mechanical alloying and hydrogen absorption properties of the Mg–Ni system” Journal of Alloys and Compounds vol.267, 1998, p.p.302-306
[47] Song, Myoung Youp” Effects of mechanical alloying on the hydrogen storage characteristics of Mg−xwt% Ni(x = 0, 5, 10, 25 and 55) mixtures” International Journal of Hydrogen Energy vol.20, 1995, p.p.221-227
[48] http://www.irc.bham.ac.uk/theme1/atomisation/spray.htm
Figure Resource: Engineering at Birmingham
[49] Terashita, N.; Takahashi, M.; Kobayashi, K.; Sasai, T.; Akiba, E.” Synthesis and hydriding/dehydriding properties of amorphous Mg2Ni1.9M0.1 alloys mechanically alloyed from Mg2Ni0.9M0.1 (M=none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder” Journal of Alloys and Compounds vol.293, 1999, p.p.541-545
[50] Spassov, Tony; Köster, Uwe” Hydrogenation of amorphous and nanocrystalline Mg-based alloys” Journal of Alloys and Compounds vol.287, 1999, p.p.243-250
[51] Shao, Huaiyu; Liu, Tong; Li, Xingguo; Zhang, Lefu” Preparation of Mg2Ni intermetallic compound from nanoparticles” Scripta Materialia vol.49, 2003, p.p.595-599
[52] http://www.transmet.com/development.htm
Figure Resource: TRANSMET CORPORATION
[53] Palade, P.; Sartori, S.; Maddalena, A.; Principi, G.; Lo Russo, S.; Lazarescu, M.; Schinteie, G.” Hydrogen storage in Mg–Ni–Fe compounds prepared by melt spinning and ball milling” Journal of Alloys and Compounds vol.415, 2006, p.p.170-176
[54] Friedlmeier, G.; Arakawa, M.; Hirai, T.; Akiba, E” Preparation and structural, thermal and hydriding characteristics of melt-spun Mg–Ni alloys” Journal of Alloys and Compounds vol.292, 1999, p.p.107-117
[55] Ueda, Tamotsu T.; Tsukahara, Makoto; Kamiya, Yoshihisa; Kikuchi, Shiomi” Preparation and hydrogen storage properties of Mg–Ni–Mg2Ni laminate composites” Journal of Alloys and Compounds vol.386, 2005, p.p.253-257
[56] Merzharov A.G.; Borovinskaya Z.P.; Combustion Scitichnol vol.10, 1975, p.p.195-201
[57] Li, Liquan; Akiyama, Tomohiro; Yagi, Jun-ichiro” Hydrogen storage alloy of Mg2NiH4 hydride produced by hydriding combustion synthesis from powder of mixture metal” Journal of Alloys and Compounds vol.308, 2000, p.p.98-103
[58] X.J. Chen, T.D. Xia et al.” Mechanism of combustion synthesis of Mg2Ni” Journal of Alloys and Compounds vol426, 2006, p.p.123-128
[59] W. Ha, H.S. Lee, J.I Youn et al.” Hydrogenation and degradation of Mg-10wt.% Ni alloy after cyclic hydriding-dehydriding” International Journal of Hydrogen Energy vol.32, 2007, p.p.1885-1891
[60] Hong, Tae-Whan; Kim, Young Jig” Fabrication and evaluation of hydriding / dehydriding behaviors of Mg–10 wt.%Ni alloys by rotation-cylinder method” Journal of Alloys and Compounds vol.333, 2002, p.p.L1-L6
[61] A. Seiler, et al.”Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu” Journal of the Less -Common Metals vol.73, 1980, p.p.193-199
[62] C. D. Yim, et al, “Hydriding properties of Mg–xNi alloys with different microstructures”, Catalysis Today vol.120, 2007, p.p.276-280
[63] Advanced Material Corporation http://www.advanced-material.com/
[64] P. Guinet, P. Perroud, J. Rebiere, Hydrogen Energy System. Veziroglu Seifritz vol.25, 1978, p.p.369-374
[65] R. Janot, F. Cuevas, M. Latroche, A. Percheron-Guegan, Intermetallics. Vol.14, 2006, p.p.163-169
[66] J. Prigent, M. Gupta, “Ab initio study of the hydrogenation properties of Mg-based binary and ternary compounds Mg2X (X = Ni, Si) and YMgNi4” Journal of Alloys and Compounds vol.446, 2007, p.p.90-96
[67] J. J. Reilly, R. H. wiswall, Inorganic Chemistry. Vol.7, 1968, p.p.2254-2261
[68] P. Selvam, B. Viswanathan, C. S. Swamy, V. Srinivasan, Int. J. Hydrogen Energy. Vol.13, 1988, p.p.87-93
[69] L. M. Zhang, Y. G. Leng, H. Y. Jiang, L. D. Chen, T. Hirai, Materials Science Engineering B. vol.B86, 2001, p.p.195-199
[70] M. Akasaka, T. Iida, K. Nishio, Y. Takanashi, “Composition dependent thermoelectric properties of sintered Mg2Si1−xGex (x = 0 to 1) initiated from a melt-grown polycrystalline source”, Thin Solid Films vol.515, 2007, p.p.8237-8241
[71] R. B. Song, T. Aizawa, J. Q. Sun, “Synthesis of Mg2Si1−xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing”, Materials Science Engineering B vol.136, 2007, p.p.111-116
[72] Z. Dehouche, R. Djaozandry, J. Goyette, T.K. Bose. “Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy”. J. Alloys Compd. Vol.288, 1999, p.p.269-276
[73] M. Y. Song, H. R. Park. “Pressure–composition isotherms in the Mg2Ni–H2 system”, J. Alloys Compd. Vol.270, 1998, p.p.164-167
[74] R. Vijay, R. Sundaresan, M. P. Maiya, S. Srinivasa Murthy. Comparative evaluation of Mg–Ni hydrogen absorbing materials prepared by mechanical alloying. Int. J. Hydrogen Energy vol.30, 2005, p.p.501-508
[75] P. Palade, S. Sartori, A. Maddalena, G. Principi, S.L. Russo, M. Lazarescu, G. Schinteie, V. Kuncser, G. Filoti, “Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling”, J. Alloys Comp. vol.415, 2006, p.p.170-176
[76] H. Shao, Y. Wang, H. Xu, X. Li, Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy, J. Solid State Chem. Vol.178, 2005, p.p.2211-2218
[77] L. Li, T. Akiyama, J.I. Yagi, “Production of hydrogen storage alloy of Mg2NiH4 by hydriding combustion synthesis in laboratory scale”, J. Mater. Synthesis and Processing vol.8, 2000, p.p.7-14
[78] C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, “Mg-Ni-Cu mixtures for hydrogen storage: A kinetic study”, Intermetallics vol.18, 2010, p.p.203-210
[79] O. Gutfleisch, N. Schlorke, N. Ismail, M. Herrich, A. Walton, J. Speight, I.R. Harris, A.S. Pratt, A. Züttel, “Hydrogenation properties of nanocrystalline Mg- and Mg2Ni-based compounds modified with platinum group metals (PGMs)”, J. Alloys Comp. vol.356, 2003, p.p.598-604
[80] M.Tanniru, H.Y. Tien, F. Ebrahimi, “Study of the dehydrogenation behavior of magnesium hydride” Scripta Materialia. Vol.63, 2010, p.p.58-60
指導教授 李勝隆(Sheng-long Lee) 審核日期 2011-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明