博碩士論文 953403042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.206.48.142
姓名 鄭穎駿(Yin-Chun Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
(Effect of strontium modifier, spinning deformation processing and heat treatment on the wear-corrosion properties of A356 alloy)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響★ 熱力微照射製作絕緣層矽晶材料之研究
★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究
★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究
★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 含Mg之亞共晶Al-Si合金(Al-7Si-0.3Mg, A356 alloy)具有質輕、耐磨、耐蝕且鑄造性佳等優點,廣泛應用於航空、汽車等運輸工業。生產鋁鑄件需先將鑄錠熔解並精煉後,將鋁液注入模穴予以成型。成型後鑄胚先切除冒口再經過熱處理、機械加工等步驟方可進行各項品質檢驗。近年來因應節能減碳需求,運輸工業對輕量化且具高強度之零組件需求提升,發展鑄鋁合金塑性成型技術之研究亦與日俱增。
基於鑄件製程對於A356合金微結構與性質的影響,以及考慮實際應用的層面,本研究首先探討熔煉中常用之鍶改良劑及熱處理條件對於鑄件微結構、磨耗腐蝕特性之效應。再深入研究旋壓成型(Spinning Deformation Processing, SDP)改善鑄鋁合金機械強度、耐磨及抗蝕等特性的機制,以提升工業應用的效益。
實驗結果發現,以鍶改良之A356合金具有纖維狀共晶矽組織,細小地集中於樹枝間區域,達到完全改良狀態,導致乾磨耗速率及磨耗腐蝕速率降低。其腐蝕速率卻因伽凡尼腐蝕敏感性增加而提高,降低合金抗蝕性。熱處理球化共晶矽形貌、粗化其尺寸,亦藉析出相強化初晶鋁,提高合金硬度。乾磨耗速率與伽凡尼腐蝕敏感性因此降低,同時增強抵抗磨耗腐蝕的能力,減低合金磨耗腐蝕速率。以改善平衡電位下磨耗腐蝕速率為例,熱處理的改善效果高於鍶改良劑,其中以T6熱處理改善效果最顯著,可達29 %。
以SDP加工A356合金,其鑄造微結構隨壁厚縮減率增加有明顯受擠壓、拉長之現象,且其變形具方向性。相對於未進行加工部位,其鑄造缺陷明顯減少,共晶矽被細化且散布於初晶鋁基地中。隨著壁厚縮減率增加,微結構與硬度有逐漸均勻之效果,導致材料受拉力後裂口成長不易,因而提高材料延展性、拉伸強度以及品質指標。材料耐磨特性亦受其影響,乾磨耗速率明顯下降。此外,加工後組織減低材料腐蝕敏感性,避免腐蝕集中攻擊樹枝間區域,提高合金抗蝕性。耐磨、抗蝕的提升有助於增強抵抗磨耗腐蝕的能力,因此SDP加工後材料具有較低之磨耗腐蝕速率。以改善平衡電位下磨耗腐蝕速率為例,A356合金經SDP加工其改善效果達31 %。
摘要(英) Hypoeutectic Al-Si alloy containing Mg (Al-7Si-0.3Mg, A356 alloy) is extensively used for aerospace and automobile industry due to its lightness, excellent abrasion and corrosion resistance, high mechanical strength and good castability. The aluminum castings have precise dimension and good quality that had gone through the melt treatment, pouring to the mold for designing shape as well as subsequent heat treatment and mechanical machining. Due to constantly increasing ecological concerns and demands for higher performance, lightweight construction is a key factor to success mainly in the transportation sector. The development of metal forming technology on the aluminum casting becomes attractive for the foundry manufacturer. As design, materials, and manufacturing processes have to be considered integratively, the modifier and heat treatment as well as spinning deformation processing (SDP) related to microstructure and various properties of A356 alloy are investigated accordingly.
The results showed that the addition of Sr modifier changed the morphology of eutectic Si particles and further improved the wear and wear-corrosion properties. Compared to unmodified A356 alloy, the corrosion resistance decreased with addition of Sr. The deterioration in corrosion property triggered the reduction in improvement of wear-corrosion rate when the applied potential increased. The heat treatment of A356 alloy spheroidezed and coarsened eutectic Si particles after the solution treatment as well as strengthened the ?-Al matrix after the aging treatment. The enhanced microstructure reduced the wear rate and improved the corrosion susceptibility of modified A356 alloy, which further enhanced the wear-corrosion resistance. When the A356 alloy wear-corroded at open circuit potential, the improvement from heat treatment was higher than that caused by Sr modifier. T6 heat treatment significantly reduced wear-corrosion rate for 29 %.
The cast structure of A356 alloy became elongated with increasing reduction of thickness caused by SDP. Compared to absence of SDP, the casting defects were reduced, the eutectic Si particles were refined and distributed throughout the Al matrix. The hardness reached a steady value due to uniformity of microstructure increasing aggressively with the reduction of thickness. The enhanced microstructure retarded crack nucleation and coalescence resulting in improvement of elongation, tensile strength and quality index as well as reduction of dry wear rate. In addition to improvement of mechanical properties, the corrosion susceptibility of interdendritc region was reduced by dispreading eutectic Si particles and eliminating casting defects due to SDP resulting in a much reduced pitting profile in comparison with A356 alloy absence of SDP. As wear-corrosion test, the strengthening of wear resistance and reduction of corrosion susceptibility caused by SDP diminished the synergistic attack of wear and corrosion, which led to improvement of wear-corrosion rate of A356 alloy. When the A356 alloy wear-corroded at open circuit potential, SDP significantly reduced wear-corrosion rate for 31 %.
關鍵字(中) ★ 磨耗腐蝕性質
★ 旋壓加工
★ 熱處理
★ A356鑄鋁合金
★ 共晶矽顆粒
★ 鍶改良劑
關鍵字(英) ★ wear-corrosion property
★ spinning deformation processing
★ heat treatment
★ Sr modifier
★ eutectic Si particle
★ A356 alloy
論文目次 Page
摘要 ……………………………………………………………………………………………………………………………………i
Abstract ……………………………………………………………………………………………………………iii
致謝辭 ……………………………………………………………………………………………………………………………………v
Content ……………………………………………………………………………………………………………………………………vi
Table list ………………………………………………………………………………………………………………ix
Figure list ………………………………………………………………………………………………………………x
Chapter 1 Introduction………………………………………………………………………………1
1.1 Development of aluminum foundry alloys and its category……………………………………………………………………………………………………………………………………1
1.2 Characteristics of Al-Si alloys…………………………………………………3
1.3 Strengthening of Al-Si alloys………………………………………………………6
1.4 Concept of spinning deformation processing (SDP) for aluminum casting………………………………………………………………………………………………………………7
1.5 Synergism of wear and corrosion…………………………………………………8
Chapter 2 Literature survey…………………………………………………………………10
2.1 Chemical eutectic modification for Al-Si alloys………10
2.2 Heat treatment for Al-Si-Mg alloys…………………………………………15
2.3 Metal spinning deformation processing…………………………………18
2.4 Synergism of wear and corrosion for aluminum alloys…………………………………………………………………………………………………………………………………………23
Chapter 3 Effect of Sr and heat treatment on the wear-corrosion properties of A356 alloy………………………………………………………………25
3.1 Motivation…………………………………………………………………………………………………………25
3.2 Experimental procedures………………………………………………………………………25
3.2.1 Alloy preparation………………………………………………………………………………………26
3.2.2 Heat treatment………………………………………………………………………………………………27
3.2.3 Microstructure characterization…………………………………………………28
3.2.4 Hardness measurement………………………………………………………………………………28
3.2.5 Dry wear test…………………………………………………………………………………………………28
3.2.6 Corrosion test………………………………………………………………………………………………29
3.2.7 Wear-corrosion test…………………………………………………………………………………29
3.2.8 Failure analysis…………………………………………………………………………………………29
3.3 Results and discussion…………………………………………………………………………30
3.3.1 Microstructural characteristics…………………………………………………30
3.3.2 Hardness and dry wear property……………………………………………………32
3.3.3 Corrosion property……………………………………………………………………………………36
3.3.4 Wear-corrosion property………………………………………………………………………39
3.4 Conclusions………………………………………………………………………………………………………44
Chapter 4 Effect of spinning deformation processing on the mechanical and wear-corrosion properties of A356 alloy……………………………………………………………………………………………………………………………………………46
4.1 Motivation…………………………………………………………………………………………………………46
4.2 Experimental procedures………………………………………………………………………46
4.2.1 Preform preparation…………………………………………………………………………………47
4.2.2 Spinning deformation processing (SDP)…………………………………47
4.2.3 Heat treatment………………………………………………………………………………………………49
4.2.4 Microstructure characterization…………………………………………………49
4.2.5 Bulk density measurement……………………………………………………………………50
4.2.6 Hardness measurement………………………………………………………………………………50
4.2.7 Tensile test……………………………………………………………………………………………………50
4.2.8 Dry wear test…………………………………………………………………………………………………51
4.2.9 Corrosion test………………………………………………………………………………………………51
4.2.10 Wear-corrosion test…………………………………………………………………………………51
4.2.11 Failure analysis…………………………………………………………………………………………52
4.3 Results and discussion…………………………………………………………………………53
4.3.1 Microstructural characteristics…………………………………………………53
4.3.2 Hardness and dry wear property……………………………………………………59
4.3.3 Tensile properties……………………………………………………………………………………65
4.3.4 Corrosion property……………………………………………………………………………………71
4.3.5 Wear-corrosion property………………………………………………………………………74
4.4 Conclusions………………………………………………………………………………………………………77
Chapter 5 General conclusions……………………………………………………………79
Chapter 6 Future works………………………………………………………………………………83
References ………………………………………………………………………………………………………………85
參考文獻 [1] J. R. Davis and Associates, ‘ASM Specialty Handbook: Aluminum and Aluminum Alloys’, ASM International, 1993.
[2] I. J. Polmear ‘Light Alloys: From Traditional Alloys to Nanocrystals’, Butterworth-Heinemann, 2006.
[3] K. R. Ravi, R. M. Pillai, K. R. Amaranathan, B. C. Pai and M. Chakraborty, ’’Fluidity of Aluminum Alloys and Composites: A Review’’, Journal of Alloys and Compounds, 456 (2008), 201.
[4] J. E. Gruzleski and B. M. Closset, ‘The Treatment of Liquid Aluminum-Silicon Alloys’, American Foundrymen’’s Society, 1990.
[5] M. Warmuzek, ‘Aluminum-Silicon Casting Alloys: Atlas of Microfractographs’, ASM International, 2004.
[6] L. Backerud, G. Chai and J. Tamminen, ‘Solidification Characteristics of Aluminum Alloys: Foundry Alloys’, American Foundrymen’’s Society, 1990.
[7] Q. Wang, ’’Microstructural Effects on the Tensile and Fracture Behavior of Aluminum Casting Alloys A356/357’’, Metallurgical and Materials Transactions A, 34 (2003), 2887.
[8] D. Ovono, I. Guillot and D. Massinon, ’’The Microstructure and Precipitation Kinetics of a Cast Aluminium Alloy’’, Scripta Materialia, 55 (2006), 259.
[9] R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan and Z. Q. Hu, ’’Age-Hardening Behavior of Cast Al–Si Base Alloy’’, Materials Letters, 58 (2004), 2096.
[10] S. S. Wang, M. D. Cheng, L. C. Tsao and T. H. Chuang, ’’Corrosion Behavior of Al–Si–Cu–(Sn, Zn) Brazing Filler Metals’’, Materials Characterization, 47 (2001), 401.
[11] A. Samuel and F. Samuel, ’’A Metallographic Study of Porosity and Fracture Behavior in Relation to the Tensile Properties in 319.2 End Chill Castings’’, Metallurgical and Materials Transactions A, 26 (1995), 2359.
[12] P. A. Rometsch and G. B. Schaffer, ’’An Age Hardening Model for Al–7Si–Mg Casting Alloys’’, Materials Science and Engineering: A, 325 (2002), 424.
[13] B. Dikici, M. Gavgali and C. Tekmen, ’’Corrosion Behavior of an Artificially Aged (T6) Al–Si–Mg-Based Metal Matrix Composite’’, Journal of Composite Materials, 40 (2006), 1259.
[14] M. Kleiner, M. Geiger and A. Klaus, ’’Manufacturing of Lightweight Components by Metal Forming’’, CIRP Annals - Manufacturing Technology, 52 (2003), 521.
[15] M. Merlin, G. Timelli, F. Bonollo and G. L. Garagnani, ’’Impact Behaviour of A356 Alloy for Low-Pressure Die Casting Automotive Wheels’’, Journal of Materials Processing Technology, 209 (2009), 1060.
[16] S. L. Semiatin, ‘Asm Handbook, Volume 14b: Metalworking: Sheet Forming’, ASM International, 2006.
[17] D. Pollitt, ’’Metal Spinning in the Automotive Industry’’, Sheet metal industries, 72 (1995), 2.
[18] S. Yin and D. Y. Li, ’’Effects of Prior Cold Work on Corrosion and Corrosive Wear of Copper in HNO3 and NaCl Solutions’’, Materials Science and Engineering: A, 394 (2005), 266.
[19] S. Yin, D. Y. Li and R. Bouchard, ’’Effects of the Strain Rate of Prior Deformation on the Wear–Corrosion Synergy of Carbon Steel’’, Wear, 263 (2007), 801.
[20] K. H. Z. Gahr, ‘Microstructure and Wear of Materials’, Elsevier, 1987.
[21] S. Z. Lu and A. Hellawell, ’’The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning’’, Metallurgical and Materials Transactions A, 18 (1987), 1721.
[22] L. Lu, K. Nogita, S. McDonald and A. Dahle, ’’Eutectic Solidification and Its Role in Casting Porosity Formation’’, JOM Journal of the Minerals, Metals and Materials Society, 56 (2004), 52.
[23] M. A. Moustafa, F. H. Samuel and H. W. Doty, ’’Effect of Solution Heat Treatment and Additives on the Microstructure of Al-Si (A413.1) Automotive Alloys’’, Journal of Materials Science, 38 (2003), 4507.
[24] B. Closset; R. A. L. Drew and J. E. Gruzleski, ’’Eutectic Silicon Shape Control by in Situ Measurement of Resistivity’’, Transactions of the American Foundrymen’’s Society, 94 (1986), 8.
[25] D. Lados, D. Apelian and L. Wang, ’’Solution Treatment Effects on Microstructure and Mechanical Properties of Al-(1 to 13 pct)Si-Mg Cast Alloys’’, Metallurgical and Materials Transactions B, 42 (2011), 171.
[26] J. W. Martin, R. D. Doherty and B. Cantor, ‘Stability of Microstructure in Metallic Systems’, Cambridge University Press, 1997.
[27] B. A. Parker, D. S. Saunders and J. R. Griffiths, ’’Quantitative Evaluation of the Microstructure of a Strontium-Modified Al-Si-Mg Alloy Following Prolonged Solution Treatment’’, Metals forum, 5 (1982), 48.
[28] D. L. Zhang, L. H. Zheng and D. H. StJohn, ’’Effect of a Short Solution Treatment Time on Microstructure and Mechanical Properties of Modified Al–7wt.%Si–0.3wt.%Mg Alloy’’, Journal of Light Metals, 2 (2002), 27.
[29] S. Shivkumar, S. Ricci, C. Keller and D. Apelian, ’’Effect of Solution Treatment Parameters on Tensile Properties of Cast Aluminum Alloys’’, Journal of Heat Treating, 8 (1990), 63.
[30] M. Tiryakioğlu and R. Shuey, ’’Quench Sensitivity of an Al-7 Pct Si-0.6 Pct Mg Alloy: Characterization and Modeling’’, Metallurgical and Materials Transactions B, 38 (2007), 575.
[31] S. Shivkumar, C. Keller and D. Apelian, ’’Aging Behavior in Cast Al-Si-Mg Alloy’’, Transactions of the American Foundrymen’’s Society, 98 (1990), 12.
[32] J. E. Hatch, ‘Aluminum: Properties and Physical Metallurgy’, ASM international, 1984.
[33] O. Music, J. M. Allwood and K. Kawai, ’’A Review of the Mechanics of Metal Spinning’’, Journal of Materials Processing Technology, 210 (2010), 3.
[34] H. C. Sortais, S. Kobayashi and E. G. Thomsen, ’’Mechanics of Conventional Spinning’’, Journal of Engineering for Industry–Transactions of the ASME, 85 (1963), 5.
[35] S. Kalpakcioglu, ’’On the Mechanics of Shear Spinning’’, Journal of Engineering for Industry–Transactions of the ASME, 83 (1961), 6.
[36] M. Gur and J. Tirosh, ’’Plastic Flow Instability under Compressive Loading During Shear Spinning Process’’, Journal of Engineering for Industry, 104 (1982), 17.
[37] S. Kalpakcioglu, ’’Maximum Reduction in Power Spinning of Tubes’’, Journal of Engineering for Industry–Transactions of the ASME, 86 (1964), 6.
[38] V. I. Pokhmurskii, I. M. Zin, V. A. Vynar and L. M. Bily, ’’Contradictory Effect of Chromate Inhibitor on Corrosive Wear of Aluminium Alloy’’, Corrosion Science, 53 (2011), 904.
[39] W. B. Bouaeshi and D. Y. Li, ’’Effects of Y2O3 Addition on Microstructure, Mechanical Properties, Electrochemical Behavior, and Resistance to Corrosive Wear of Aluminum’’, Tribology International, 40 (2007), 188.
[40] D. R. Arnott, B. R. W. Hinton, and N. E. Ryan, ’’Cationic Film-Forming Inhibitors for the Corrosion Protection of AA 7075 Aluminum Alloy in Chloride Solutions’’, Materials Performance, 26 (1987), 42.
[41] D. R. Arnott, B. R. W.Hinton and N. E.Ryan, ’’Cationic-Film-Forming Inhibitors for the Protection of the AA 7075 Aluminum Alloy against Corrosion in Aqueous Chloride Solution’’, Corrosion, 45 (1989), 12.
[42] C. Fang, C. Huang and T. Chuang, ’’Synergistic Effects of Wear and Corrosion for Al2O3 Particulate-Reinforced 6061 Aluminum Matrix Composites’’, Metallurgical and Materials Transactions A, 30 (1999), 643.
[43] M. Torsater, H. S. Hasting, W. Lefebvre, C. D. Marioara, J. C. Walmsley, S. J. Andersen and R. Holmestad, ’’The Influence of Composition and Natural Aging on Clustering During Preaging in Al-Mg-Si Alloys’’, Journal of Applied Physics, 108 (2010), 73527.
[44] H. Moller, G. Govender and W. E. Stumpf, ’’Natural and Artificial Aging Response of Semisolid Metal Processed Al–Si–Mg Alloy A356’’, International Journal of Cast Metals Research, 20 (2007), 340.
[45] G. Ran, J. E. Zhou and Q. G. Wang, ’’Precipitates and Tensile Fracture Mechanism in a Sand Cast A356 Aluminum Alloy’’, Journal of Materials Processing Technology, 207 (2008), 46.
[46] M. F. Ibrahim, E. Samuel, A. M. Samuel, A. M. A. Al-Ahmari and F. H. Samuel, ’’Metallurgical Parameters Controlling the Microstructure and Hardness of Al–Si–Cu–Mg Base Alloys’’, Materials & Design, 32 (2011), 2130.
[47] E. Sjolander and S. Seifeddine, ’’The Heat Treatment of Al–Si–Cu–Mg Casting Alloys’’, Journal of Materials Processing Technology, 210 (2010), 1249.
[48] R. E. Reed-Hill and R. Abbaschian, ‘Physical Metallurgy Principles’, PWS Publishing, 1992.
[49] N. D. Alexopoulos and S. G. Pantelakis, ’’Quality Evaluation of A357 Cast Aluminum Alloy Specimens Subjected to Different Artificial Aging Treatment’’, Materials & Design, 25 (2004), 419.
[50] C. Y. Yang, S. L. Lee, C. K. Lee and J. C. Lin, ’’Effects of Sr and Sb Modifiers on the Sliding Wear Behavior of A357 Alloy under Varying Pressure and Speed Conditions’’, Wear, 261 (2006), 1348.
[51] Y. Huang, X. Jiang and S. Li, ’’Pure Mechanical Wear Loss Measurement in Corrosive Wear’’, Bulletin of Materials Science, 23 (2000), 539.
[52] S. I. Pyun, J. S. Hyun and J. S. Kim, ’’Role of Passivating Oxide Film in the Corrosive Wear of Al-7%Si Alloy’’, Materials Science and Engineering: A, 150 (1992), 249.
[53] C. C. Wong, T. A. Dean and J. Lin, ’’A Review of Spinning, Shear Forming and Flow Forming Processes’’, International Journal of Machine Tools and Manufacture, 43 (2003), 1419.
[54] S. Kalpakjian and S. Rajagopal, ’’Spinning of Tubes: A Review’’, Journal of Applied Metalworking, 2 (1982), 211.
[55] ASTM B328-96, ’’Standard Test Method for Density, Oil Content, and Interconnected Porosity of Sintered Metal Structural Parts and Oil-Impregnated Bearings’’, ASTM international, 2003.
[56] Y. C. Tsai, C. Y. Chou, S. L. Lee, C. K. Lin, J. C. Lin and S. W. Lim, ’’Effect of Trace La Addition on the Microstructures and Mechanical Properties of A356 (Al–7Si–0.35Mg) Aluminum Alloys’’, Journal of Alloys and Compounds, 487 (2009), 157.
[57] C. Y. Chou, K. W. Wang, S. L. Lee and T. S. Yang, ’’Modifying Al–7si–0.35mg Alloys Using Equal Channel Angular Extrusion’’, Materials Letters, 62 (2008), 2469.
[58] F. Lee, J. Major and F. Samuel, ’’Effect of Silicon Particles on the Fatigue Crack Growth Characteristics of Al-12 Wt Pct Si-0.35 Wt Pct Mg-(0 to 0.02) Wt Pct Sr Casting Alloys’’, Metallurgical and Materials Transactions A, 26 (1995), 1553.
[59] L. Pedersen and L. Arnberg, ’’The Effect of Solution Heat Treatment and Quenching Rates on Mechanical Properties and Microstructures in AlSiMg Foundry Alloys’’, Metallurgical and Materials Transactions A, 32 (2001), 525.
[60] Z. Ma, E. Samuel, A. M. A. Mohamed, A. M. Samuel, F. H. Samuel and H. W. Doty, ’’Influence of Aging Treatments and Alloying Additives on the Hardness of Al–11Si–2.5Cu–Mg Alloys’’, Materials & Design, 31 (2010), 3791.
[61] M. J. Roy, R. J. Klassen and J. T. Wood, ’’Evolution of Plastic Strain During a Flow Forming Process’’, Journal of Materials Processing Technology, 209 (2009), 1018.
[62] J. Zhang and A. T. Alpas, ’’Delamination Wear in Ductile Materials Containing Second Phase Particles’’, Materials Science and Engineering: A, 160 (1993), 25.
[63] M. L. Santella, T. Engstrom, D. Storjohann and T. Y. Pan, ’’Effects of Friction Stir Processing on Mechanical Properties of the Cast Aluminum Alloys A319 and A356’’, Scripta Materialia, 53 (2005), 201.
[64] M. Drouzy, S. Jacob and M. Richard, ’’Interpretation of Tensile Results by Means of Quality Index and Probable Yield Strength’’, International cast metals journal, 5 (1980), 43.
[65] M. Tiryakioğlu, J. Campbell and N. Alexopoulos, ’’Quality Indices for Aluminum Alloy Castings: A Critical Review’’, Metallurgical and Materials Transactions B, 40 (2009), 802.
[66] X. Li, X. Nie, L. Wang and D. O. Northwood, ’’Corrosion Protection Properties of Anodic Oxide Coatings on an Al–Si Alloy’’, Surface and Coatings Technology, 200 (2005), 1994.
[67] W. Osorio, N. Cheung, J. Spinelli, P. Goulart and A. Garcia, ’’The Effects of a Eutectic Modifier on Microstructure and Surface Corrosion Behavior of Al-Si Hypoeutectic Alloys’’, Journal of Solid State Electrochemistry, 11 (2007), 1421.
[68] W. R. Osorio, P. R. Goulart and A. Garcia, ’’Effect of Silicon Content on Microstructure and Electrochemical Behavior of Hypoeutectic Al–Si Alloys’’, Materials Letters, 62 (2008), 365.
[69] A. J. Trowsdale, B. Noble, S. J. Harris, I. S. R. Gibbins, G. E. Thompson and G. C. Wood, ’’The Influence of Silicon Carbide Reinforcement on the Pitting Behaviour of Aluminium’’, Corrosion Science, 38 (1996), 177.
[70] M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim and J. C. Lee, ’’Effect of the Number of Ecap Pass Time on the Electrochemical Properties of 1050 Al Alloys’’, Materials Science and Engineering: A, 366 (2004), 282.
[71] I. J. Son, H. Nakano, S. Oue, S. Kobayashi, H. Fukushima and Z. Horita, ’’Pitting Corrosion Resistance of Ultrafine-Grained Aluminum Processed by Severe Plastic Deformation’’, Journal of the Japan Institute of Metals, 69 (2005), 892.
[72] Kobayashi T, ’’Strength and Fracture of Aluminum Alloys’’, Materials Science and Engineering: A, 280 (2000), 8.
[73] N. Roy, A. Samuel and F. Samuel, ’’Porosity Formation in Ai-9 Wt Pct Si-3 Wt Pct Cu Alloy Systems: Metallographic Observations’’, Metallurgical and Materials Transactions A, 27 (1996), 415.
[74] Hyun You Kim, Sang Won Han and Hyuck Mo Lee, ’’The Influence of Mn and Cr on the Tensile Properties of A356–0.20fe Alloy’’, Materials Letters, 60 (2006), 1880.
[75] Yen-Hung Tan, Sheng-Long Lee and Yu-Lom Lin, ’’Effects of Be and Fe Content on Plane Strain Fracture Toughness in A357 Alloys’’, Metallurgical and Materials Transactions A, 26 (1995), 2937.
[76] W. C. Lattin and V. P. Utgikar, ’’Transition to Hydrogen Economy in the United States: A 2006 Status Report’’, International Journal of Hydrogen Energy, 32 (2007), 3230.
[77] H. Z. Wang, D. Y. C. Leung, M. K. H. Leung and M. Ni, ’’A Review on Hydrogen Production Using Aluminum and Aluminum Alloys’’, Renewable and Sustainable Energy Reviews, 13 (2009), 845.
指導教授 李勝隆、林志光
(Sheng-Long Lee、Chih-Kuang Lin)
審核日期 2012-5-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明