博碩士論文 953404004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.149.233.62
姓名 莊振富(Chen-Fu Chuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
(Fabrication and Properties of Well-ordered Arrays of Single-crystalline NiSi2 Nanowires, Nanotubes and Epitaxial NiSi2/Si Heterostructures)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中在(001)矽晶基材上製備出規則準直排列的二矽化鎳(NiSi2)/矽(Si)的異質結構和純單晶二矽化鎳奈米線陣列結構。此結果指出鎳金屬在矽奈米線上進行界面矽化反應,在低溫退火300℃ 時,觀察到Epi-NiSi2之奈米結構在{1 ̅11} Si上有特定刻面形貌形成,現象從一開始到時間停止都只有唯一這反應相出現。 此外在較高溫退火500 ℃ 4小時,矽在奈米線中的剩餘部分將被完全消耗,二矽 化鎳/矽異質結構奈米線轉變成為全矽化物二矽化鎳奈米線。從穿透式電子顯微鏡(TEM)及選區電子繞射(SAED)分析中,可發現全二矽化鎳奈米線是單晶結構且它們其軸向方向是平行於[001]方向。所製備出準直排列的二矽化鎳奈米線,由於其良好有序排列的單晶結構,並且較低的有效功函數,性質呈現出非常低的啟動電場1.1 V /μm,具有優異的場發射特性。
矽化物奈米線的表面潤濕性,發現水接觸角由疏水性轉換親水性歸因於二矽化鎳相的形成,而水接觸角的角度遞減原因於矽化反應程度增加後。結果可發現全鎳矽化物奈米線最為親水,此現象可以用Wenzel model 解釋。所得到結果呈現出令人振奮的願景,這論文所提出的新方法將提供製造其高度規則有序準直完全矽化物奈米線結構陣列的能力,並可能提供潛在的應用在構建以垂直式矽化物為基底的奈米元件上。
這論文第二部份是成功利用蒸鍍鎳金屬於奈米線上,並結合熱退火與濕式蝕刻步驟在矽晶上製備出規則準直有序排列的二矽化鎳(NiSi2)奈米管狀結構,並量測其試片場發性質。
摘要(英) In this study, we reported the design, fabrication, and characterization of well-ordered arrays of vertically-aligned, epitaxial NiSi2/Si heterostructures and single-crystalline NiSi2 nanowires on (001)Si substrates, The epitaxial NiSi2 with {1 ̅11} facets was found to be the first and the only silicide phase formed inside the Si nanowires after annealing at a temperature as low as 300 ℃. Upon annealing at 500 ℃ for 4 h, the residual parts of Si nannwires were completely consumed and the NiSi2/Si heterostructured nanowires were transformed to fully silicided NiSi2 nanowires. TEM and SAED analyses indicated that all the NiSi2 nanowires were single crystalline and their axial orientations were parallel to the [001] directions. The obtained vertically -aligned NiSi2 nanowires, owing to their well-ordered arrangement, single-crystalline structure, and lower effective work function, exhibit supertior field-emission properties with a very low turn-on field of 1.1 V/μm. The surface wettability of the nanowires was found to turn from hydrophobic to hydrophilic after the formation of NiSi2 phase and the measured water contact angle decreased with an increase in the degree of the Ni silicidation reaction. The increased hydrophilicity could be explained by the Wenzel moder. The obtained results present the exciting prospects that the new approach proposed here would provide the capability to fabricate other highly-ordered, vertically-aligned fully silicide nanowire arrays and may offer potential application in constructing vertical silicide-based nanodevices.
An effective method was demonstrated for obtaining well-aligned NiSi2 NTs with favorable morphological features for field emission and wetting properties by combining single-step Ni evaporation with a subsequent wet etching process.
關鍵字(中) ★ 二矽化鎳
★ 矽化鎳
★ 奈米線
★ 奈米管
★ 場發效益
★ 潤濕特性
關鍵字(英) ★ NiSi2
★ Nickel Silicide
★ Nanowires
★ Nanotubes
★ Field emission
★ wetting properties
論文目次 目錄
Chapter 1 Introduction ...................................................................................................................... 1
1.1 Overview ............................................................................................................................... 1
1.2 One-Dimensional (1D) Nanostructures ............................................................................. 3
1.3 Fabrication of Si Nanowire Arrays ............................................................................................ 5
1.4 Transition Metal Silicides ................................................................................................... 6
1.5 Solid State Silicide Nanowire Formation .................................................................................. 7
1.6 Nickel Nanowires Silicides ....................................................................................................... 8
1.7 Vertically Well-Aligned Epitaxial Ni2Si and Ni31Si12 Nanowire with Excellent Field Emission
Properties ................................................................................................................................... 10
1.8 Tubes Silicide ......................................................................................................................... 11
1.9 Scope and Aim of the Thesis................................................................................................. 12
1.10. List of Figures ...................................................................................................................... 14
Chapter 2: Experimental Procedures ............................................................................................... 18
2.1 Preparation of Ordered Si Nanowire Arrays....................................................................... 18
2.2 Silicidation of Ordered Si Nanowire Arrays ........................................................................ 19
2.3 Reactive Ion Etching............................................................................................................. 19
2.4 Scanning Electron Microscope (SEM) Observation ............................................................ 19
2.5 Field-Emission Scanning Electron Microscope (FE-SEM) Observation ............................ 20
2.6 Preparation of Samples for Transmission Electron Microscope (TEM) Observation ....... 21
2.7 Transmission Electron Microscope Observation ................................................................. 21
2.8 High-Resolution Transmission Electron Microscope (TEM) .................................................... 22
2.9 Energy Dispersive Spectrometer (EDS) Analysis ........................................................... 22
2.10 Field Emission (FE) Measurements ............................................................................... 23
2.11 Contact Angle Measurement ........................................................................................... 25
Chapter 3 Ordered and Heterosturctured NiSi2 Nanowire Arrays ........................................ 27
3.1 Motivation ............................................................................................................................. 27
VII
3.2 Experimental Procedures ....................................................................................................... 29
3.3 Results and Discussion ........................................................................................................... 31
3.4 Summary and Conclusions ..................................................................................................... 38
3.5. List of Figures ..................................................................................................................... 39
Chapter 4 Properties of Ordered and Heterosturctured NiSi2 Nanowire Arrays ................. 47
4.2 Experimental Procedures ................................................................................................. 48
4.3 Results and Discussion ...................................................................................................... 48
4.3.1 Electron Field Emission Properties of Nickel Silicide Samples ................................. 48
4.3.2 Wetting Properties of Nickel Silicide Samples .................................................................. 51
4.4 Supporting information..................................................................................................... 52
4.4.1 Experimental details....................................................................................................... 52
4.4 Supporting Information .................................................................................................... 53
4.4.2 Results and discussion ................................................................................................... 53
Ⅱ. Figure S1: The results of TEM and SAED analyses and water contact angle
measurements for the blanket Ni-silicide thin films fabricated at various reaction
temperatures and time. ............................................................................................................... 53
4.5 Summary and Conclusions ................................................................................................ 55
4.6. List of Figures ...................................................................................................................... 57
Chapter 5 Preparation of Ordered NiSi2 Silicide Nanotube Arrays and its Electrical Properties ....... 61
5.1 Motivation ........................................................................................................................... 61
5.2 Experimental Procedures ................................................................................................. 64
5.3 Results and Discussion ...................................................................................................... 66
5.3.1 NiSi2 Nanotubes Arrays .................................................................................................. 66
5.3.2 Field emission properties .............................................................................................. 74
5.4 Summary and Conclusions ................................................................................................ 77
5.5. List of Figures ..................................................................................................................... 79
Chapter 6 Future Prospects ............................................................................................................. 86
VIII
6.1 Synthesis and I-V Properties of Aligned Single-Crystal NiSi2 Nanowires ...................... 86
6.2 The Fabrication and Applications of Other Nanostructured Nickel Silicide Nanowire
Arrays .................................................................................................................................... 88
Chapter 7 Summary and Conclusions ......................................................................................... 90
7.1 Ordered and Heterostructured NiSi2 Nanowires Arrays………........................…….......90
7.2 The Properties of Ordered and Heterostructured NiSi2 Nanowires Arrays ..................... 90
7.3 Ordered Single Crystal NiSi2 Silicide Nanotubes Arrays .................................................. 91
References ...................................................................................................................................... 92
參考文獻 References
Chapter 1 Introduction
1.1 Alivisatos, P. “Semiconductor clusters, nanocrystals, and quantum
Dots.” Science 1996, 271, 933-937.
1.2 Murray, C. B.; Kagan, C. R.; Bawendi, M. G. “Synthesis and
characterization of monodisperse nanocrystals and close-packed
nanocrystal assemblies.” Annu. Rev. Mater. Sci. 2000, 30, 545-610.
1.3 Krans, J. M.; Rutenbeek, J. M. van; Fisun, V. V.; Yanson, I. K.; deJongh, L.
J. “The signature of conductance quantization in metallic point contacts.”
Nature 1995, 375, 767-769.
1.4 Likharev, K. K.; Claeson, T. “Single electronics.” Sci. Am. 1992, 266,80-85.
1.5 Markovich, G.; Collier, G. P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.;
Heath, J. R. “Architectonic quantum dot solids.” Acc.Chem. Res. 1999, 32,
415-423.
1.6 Narihiro, M.; Yusa, G.; Nakamura, Y.; Noda, T.; and Sakaki, H.;
“Resonant tunneling of electrons via 20 nm scale InAs quantum
dot and magnetotunneling spectroscopy of its electronic states.”
Appl. Phys. Lett. 1996, 70, 105-107.
1.7 Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. “Large on-offratios and
negative differential resistance in a molecular electronicdevice.” Science
1999, 286, 1550-1552.
1.8 Papadopoulos, C.; Rakitin, A.; Li, J.; Vedeneev, A. S.; Xu, J. M.
“Electronic transport in Y-junction carbon nanotubes.” Phys. Rev.Lett. 2000,
85, 3476-3479.
1.9 Björk, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.;
94
Wallenberg, L. R.; Samuelson, L. “Nanowire resonant tunneling diodes.”
Appl. Phys. Lett. 2002, 81, 4458-4460.
1.10 Meindl, J. D.; Chen, Q.; Davis, J. A. “Limits on silicon nanoelectronics
for terascale integration.” Science 2001, 293, 2044-2049.
1.11 Lieber, C. M. “The incredible shrinking circuit.” Sci. Am. 2001,
285,58-65.
1.12 Balzani, V.; Credi, A.; Venturi, M. “The bottom-up approach to
molecular-level devices and machines.” Chem. Eur. J. 2002, 8, 5524-5532.
1.13 Drexler, K. E. “Engines of creation, the coming era of nanotechnology.”
Anchor Press, New York, 1986.
1.14 Drexler, K. E. “Machine-phase nanotechnology.” Sci. Am. 2001, 285,
74-75.
1.15 1.15 Nalwa, H. S. Handbook of : Nanostrucrured Materials and
Nanotechnology, Academic Press, New York, 2000.
1.16 Alivisatos, P.; Barbara, P. F.; Castleman, A. W.; Chang, J.; Dixon, D. A.;
Kline, M. L.; McLendon, G. L.; Miller, J. S.; Ratner, M. A.; Rossky, P. J.;
Stupp, S. I.; Thompson, M. I. “From molecules to materials: Current trends
and future directions.” Adv Mater. 1998, 10, 1297-1336.
1.17 Thiaville, A.; Miltat, J. “Small is beautiful.” Science 1999. 284,
1939-1940.
1.18 Special issue of “The future of microelectronics.” Nature 2000, 406,
1021-1021.
1.19 Ross, C. "Patterned magnetic recording media." Annu. Rev. Mater. Sci.
2001, 31, 203.
1.20 Murray, C. B.; Kagan, C. R.; Bawendi, M. G. “Synthesis and
95
characterization of nanocrystals and close-packed nanocrystal assemblies.”
Annu. Rev. Mater. Sci. 2000, 30, 545-610.
1.21 Krans, J. M.; van Rutenbeek, J. M.; Fisun, V. V.; Yanson, I. K.; de Jongh,
L. J. “The signature of conductance quantization in metallic point contacts.”
Nature 1995, 375, 767-769.
1.22 Likharev, K. K. “Correlated Discrete Transfer of Single Electrons in
Ultrasmall.” Tunnel Junctions, IBM 1. Res. Develop. 1998, 32,144-158.
1.23 Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remade, F.; Levine, R.
D.; Heath, J. R. Acc. Chem. Res. 1999, 32,415-423.
1.24 Wang, Z. L. “Characterizing the structure and properties of
individual wire-like nanoentities.” Adv Mater. 2000, 12,1295-1298.
1.25 Cerrina, F.; Marrian, C. “A path to nanolithography.” MRS Bull. 1996,
21, 56-62.
1.26 Matsui, S.; Ochiai, Y. “Focused ion beam applications to solid state
devices.” Nanotechnology 1996, 7, 247-258.
1.27 Hong, S. H.; Zhu, Jin; Mirkin, Chad A., “Multiple ink nanolithography:
Toward a multiple-pen nano- plotter.” Mirkin. Science 1999, 286, 523-525.
1.28 Levenson, M. D. “Welcome to the DUV revolution.” Solid State
Technol., 1995, 38, 81–98.
1.29 Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. “Unconventional
methods for fabricating and patterning nanostructures.” Chem. Rev 1999,
99,1823-1848.
1.30 Wagner R. S.; Ellis W. C. “Vapor liquid solid mechanism of single
crystal growth.” Appl. Phys. Lett. 1964, 4, 89-90.
1.31 Westwater, J.; Gosain, D. P.; Tomiya S.; Usui S.; Ruda, H. “Growth of
96
silicon nanowires via gold silane vapor liquid solid reaction.” J. Vac. Sci.
Technol. B 1997, 15, 554-557.
1.32 Yu, D. P. “Nanoscale silicon wires synthesized using simple physical
evaporation.” Appl. Phys. Lett. 1998, 72, 3458-3460.
1.33 Buttner, C. C.; Zakharov, N. D.; Pippel, E.; Gösele, U.; Werner, P.
“Gold-enhanced oxidation of MBE-grown silicon nanowires.” Semicond.
Sci. Technol. 2008, 23, 075040-075045.
1.34 Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. “Control of
thickness andorientation of solution-grown silicon nanowires.” Science
2000, 287, 1471-1471.
1.35 Morales, A. M.; Lieber C. M. “A laser ablation method for the synthesis
of crystalline semiconductor nanowires.” Science 1998, 279, 208–211.
1.36 Mart J.; Garcia R. “Silicon nanowire circuits fabricated by AFM
oxidation nanolithography.” Nanotechnology 2010, 21, 245301-245305.
1.37 Fu, Y.Q.; Colli, A.; Fasoli, A.; Luo, J. K.; Flewitt, A. J.; Ferrari A. C.;
Milne, W. I. “Deep reactive ion etching as a tool for nanostructure
fabrication.” J. Vac. Sci. Technol. B 2009, 27, 1520–1526.
1.38 Li, X.; Bohn, P. W. “Metal-assisted chemical etching in HF–H2O2
produces porous silicon.” Appl. Phys. Lett. 2000, 77, 2572–2574.
1.39 Peng, K.; Xu, Y.; Wu, Y.; Yan, Y.; Lee, S. T.; Zu, J. “Aligned single
crystalline silicon nanowire arrays for photovoltaic applications.” Small
2005, 1, 1062–1067.
1.40 Qiu, T.; Wu, X. L.; Siu, G. G.; Chu, P. K. “Intergrowth mechanism of
silicon nanowires and silver dendrites.” J. Electron. Mater. 2006, 35,
1879–84.
97
1.41 Peng, K.; Wu, Y.; Fang, H.; Zhong, X.; Xu, Y.; Zhu, J. “Uniform,
axial-orientation alignment of one-dimensional single-crystal silicon
nanostructure arrays.” Angew. Chem. Int. Edn 2005, 44, 2737–2742.
1.42 Cheng, S. L.; Chung, C. H.; Lee, H. C. “A study of the synthesis,
characterization, and kinetics of vertical silicon nanowire arrays on (001)Si
substrates.” J. Electrochem. Soc. 2008, 155, D711–D 714.
1.43 Chen, C. Y.; Wu, C. S.; Chou, C. J.; Yen, T. J. “Morphological control
of single-crystalline silicon nanowire arrays near room temperature.” Adv.
Mater. 2008, 20, 3811–3815.
1.44 Peng, K.; Hu, J.;Yan Y.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J.
“Fabrication of single-crystalline silicon nanowires by scratching a silicon
surface with catalytic metal particles.” Adv. Funct. Mater. 2006, 16,
387–94.
1.45 Kumar, D.; Srivastava, S. K.; Singh, P. K.; Sood, K. N.; Singh, V. N.;
Dilawar, N.; Husain, M. “Room temperature growth of wafer-scale silicon
nanowire arrays and their Raman characteristics.” J. Nanopart. Res. 2010,
12, 2267–2276.
1.46 Peng, K.; Yan, Y.; Gao, S. P.; Zhu, J. “Synthesis of large-area silicon
nanowire arrays via self-assembling nanoelectrochemistry.” Adv. Mater.
2002, 14, 1164–1167.
1.47 Peng, K.; Zhu, J. “Morphological selection of electroless metal deposits
on silicon in aqueous fluoride solution.” Electrochim. Acta 2004, 49,
2563–2568.
1.48 Peng, K.; Fang, H; Hu, J.; Wu, Y.; Zhu, J.; Yan, Y.; Lee, S.
“Metal-particle-induced, highly localized site-specific etching of Si and
98
formation of single-crystalline Si nanowires in aqueous fluoride solution.”
Chem. Eur. J. 2006, 12, 7942–7947.
1.49 Megouda, N.; Hadjersi, T.; Piret, G.; Boukherroub, R.; Elkechai, O.
“Au-assisted electroless etching of silicon in aqueous HF/H2O2
solution.”Appl. Surf. Sci. 2009, 255, 6210–6216.
1.50 Fellahi, O.; Hadjersi, T.; Maamache, M.; Bouanik, S.; Manseri, A.
“Effect of temperature and silicon resistivity on the elaboration of silicon
nanowires by electroless etching.” Appl. Surf. Sci. 2010, 257 591–595.
1.51 Schmidt, V.; Senz, S.; Gösele, U. “Diameter-dependent growth
direction of epitaxial silicon nanowires.” Nano Lett. 2005 , 5 , 931-935 .
1.52 Huang, Z.; Shimizu, T.; Senz, S.; Zhang, Z.; Geyer, N.; Gösele, U.
“Oxidation rate effect on the direction of metal-assisted chemical and
electrochemical etching of silicon.” J. Phys. Chem. C 2010, 114,
10683-10690.
1.53 Huang, Z. P.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X. X.; Lee, W.;
Geyer, N.; Gösele, U. Nano Lett. 2009 , 9 , 2519-2525.
1.54 Choi, W. K.; Liew, T. H.; Dawood, M. K. “Synthesis of silicon
nanowires and nanofin arrays using interference lithography and catalytic
etching.” Nano Lett., 2008, 8, 3799-3802.
1.55 Boor, J. de.; Geyer, N.; Wittemann, J. V.; Gösele, U.; Schmidt, V.,
“Sub-100 nm silicon nanowires by laser interference lithography and
metal-assisted etching.” Nanotechnology, 2010, 21, 095302-095306.
1.56 Cloutier, S. G.; Hsu, C. H.; Kossyrev, P. A.; Xu, J. “Radiative
recombination enhancement in silicon via phonon localization and
selection-rule breaking.” Adv. Mater. 2006, 18, 841-844.
1.57 Cloutier, S. G.; Hsu, C. H.; Kossyrev, P. A.; Xu, J. “Radiative
99
recombination enhancement in silicon via phonon localization and
selection-rule breaking.” Adv. Mater. 2006, 18, 841-844 .
1.58 Datta, M. K.; Pabi, S. K.; Murty, B. S. “Phase fields of nickel silicides
obtained by mechanical alloying in the nanocrstalline state.” J. Appl. Phys.
2000, 87, 8393-8400.
1.59 Crofton, J.; Mcmullin, P. G.; Williams, J. R.; Bozack, M. J.;
“High-temperature ohmic contact to n-type 6H-SiC using nickel.” J. Appl.
Phys. 1995, 77, 1317-1319.
1.60 Datta, M. K.; Pabi, S. K.; Murty, B. S. “Thermal stability of
nanocrystalline Ni silicides synthesized by mechanical alloying.” Mater. Sci.
Eng. A 2000, 284, 219-225.
1.61 Majni, G.; Costato, M.; Panini, F. “The growth processes of thin film
ailicides in Si/Ni planar systems.” Thin Solid Films 1985, 125, 71-78.
1.62 Tu, K. N.; Chu, W. K.; Mayer, J. W. “Structure and growth kinetics of
Ni2Si of silicon.” Thin Solid Films 1975, 25, 403-413.
1.63 Olowolafe, J. O.; Nicolet, M. A.; Mayer, J. W. “Influence of the nature
of the Si substrate on nickel silicide formed from thin Ni films.” Thin Solid
Films 1976, 38, 143-150.
1.64 Lien, C. D.; Nicolet, M. A.; Lau, S. S. “Kinetics of silicides on Si<100>
and evaporated silicon substrates.” Thin Solid Films 1986, 143, 63-72.
1.65 d′Heurle, F.; Petersson, C. S.; Baglin, J. E. E.; Placa, S. J. La; Wong, C.
Y. “Formation of thin films of NiSi: Metatable structure, diffusion
mechanisms in intermetallic compounds.” J. Appl. Phys. 1984, 55,
4208-4218.
1.66 Levit, M.; Grimberg, I.; Weiss, B. Z. “Morphology and kinetics of the
100
interaction between Ni90Ti10 alloy thin film and 6H-SiC single crystal.” J.
Mater.Res. 1998, 13, 3247-3255.
1.67 Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.;
Liebau, M.; Pamler, W.; Cheze, C.; Riechert, H.; Lugli, P.; Kreupl, F.
“Transistors with intruded nickel-silicide contacts.” Nano Lett., 2006, 6,
2660–2666.
1.68 Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J. W.; Chen, L. J.; Tu, K. N.;
Huang, Y. “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire
heterostructures, and nanodevices.” Nano Lett., 2008, 8, 913–918.
1.69 Lu, K. C.; Tu, K. N.; Wu, W. W.; Chen, L. J.; Yoo, B. Y.;
Myung, N. V. “Point contact reactions between Ni and Si nanowires and
reactive epitaxial growth of axial nano-NiSi/Si.” Appl. Phys. Lett., 2007,
90, 253111.
1.70 Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen,
L. J.; Tu, K. N. “In situ control of atomic-scale Si layer with huge strain in
the nanoheterostructure NiSi/Si/NiSi through point contact reaction.” Nano
Lett., 2007, 7, 2389–2394.
1.71 Lin, Y. C.; Chen, Y.; Shaios, A.; Huang, Y. “Detection of spin
polarized carrier in silicon nanowire with single crystal MnSi as magnetic
contacts.” Nano Lett., 2010, 10, 2281–2287.
1.72 Chou, Y. C.; Wu, W. W.; Chen, L. J.; Tu, K. N. “Homogeneous
nucleation of epitaxial CoSi2 and NiSi in Si nanowires.” Nano Lett. 2009, 9,
2337–2342.
1.73 Lin, Y. C.; Chen, Y.; Xu, D.; Huang, Y. “Growth of nickel silicides in
Si and Si/SiOx core/shell nanowires.” Nano Lett., 2010, 10, 4721–4726.
101
1.74 Chou, Y. C.; Wu, W. W.; Cheng, S. L.; Yoo, B. Y.; Myung, N.; Chen,
L. J.; Tu, K. N. “In-situ TEM observation of repeating events of nucleation
in epitaxial growth of nano CoSi2 in nanowires of Si.” Nano Lett., 2008, 8,
2194–2199.
1.75 Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.;
Liebau, M.; Pamler, W.; Cheze, C.; Riechert, H.; Lugli, P.; Kreupl, F.
“Silicon-nanowire transistors with intruded nickel-silicide contacts.” Nano
Lett., 2006, 6, 2660–2666.
1.76 Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M.; “Single-crystal
metallic nanowires and metal/semiconductor nanowire heterostructures.”
Nature, 2004, 430, 61–65.
1.77 Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J. W.; Chen, L. J.; Tu, K. N.;
Huang, Y. “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire
heterostructures, and nanodevices.” Nano Lett., 2008, 8, 913–918.
1.78 Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen,
L. J.; Tu, K. N. “In situ control of atomic-scale Si layer with huge strain in
the nanoheterostructure NiSi/Si/NiSi through point contact reaction.” Nano
Lett., 2007, 7, 2389–2394.
1.79 Kedzierski, J.; Xuan, P.; Anderson, E. H.; Bokor, J.; Tsu-Jae K. ;
Chenming, H. “Complementary silicide source/drain thin-body
MOSFETs for the 20 nm Gate length regime.” Electron Devices
Meeting, IEDM Technical Digest. International, 2000, 57–60.
1.80 Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen,
L. J.; Tu, K. N. “ In situ control of atomic-scale Si layer with huge strain in
the nanoheterostructure NiSi/Si/NiSi through point contact reaction.” Nano
102
Lett., 2007, 7, 2389–2394.
1.81 Lin, Y. C.; Chen, Y.; Shaios, A.; Huang, Y.
“Detection of spin polarized carrier in silicon nanowire with single crystal
MnSi as magnetic contacts.” Nano Lett., 2010, 10, 2281–2287.
1.82 Lee, C. Y. L., M. P.; Liao, K. F.; Wu, W. W.; Chen, L. J. “Vertically
well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission
properties.” Appl. Phys. Lett. 2008, 93, 113109-113111.
1.83 Lee, C. Y. L., M. P.; Liao, K. F.; Lee, W. F.; Huang, C. Te.; Chen,
S. Yu.; and Chen, L. J. “Free-standing single-crystal NiSi2 nanowires with
excellent electrical transport and field.” J. Phys. Chem. C 2009, 113,
2286–2289.
1.84 Rapoport, L.; Fleischer, N.; Tenne, R. J. “ Applications
of WS2(MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid
lubrication and for structural nanocomposites.” Mater. Chem. 2005, 15,
1782–1788.
1.85 Tenne, R. “Inorganic nanoclusters with fullerene-like structure and
nanotubes.” Prog. Inorg. Chem. 2001, 50, 269–315.
1.86 Tenne, R.; Zettle, A. K. “Nanotubes from inorganic materials.” Carbon
Nanotubes 2001, 80, 81–112.
1.87 Patzke, G. R.; Krumeich, F.; Nesper, R. “Anisotropic modules for a
future nanotechnology.” Angew. Chem., Int. Ed. 2002, 41, 2446–2461.
1.88 Martin, C. R. “Nanomaterials: a membrane-based synthetic approach.”
Science 1994, 266, 1961–1966.
1.89 Goldberger, J.; He, R.; Zhang, Y.; Lee, S. W.; Yan, H.; Choi, H. J.;
Yang, P. D. “Single-crystal gallium nitride nanotubes.” Nature 2003, 422,
103
599–602.
1.90 Goldberger, J.; Fan, R.; Yang, P. D. “Inorganic Nanotubes: A novel
platform for nanofluidics.” Acc. Chem. Res. 2006, 39, 239–248.
1.91 De Heer, W. A.; Bonard, J. M.; Fauth, K.; Chatelain, A.; Forro, L.;
Ugarte, D. “ Electron field emitters based on carbonnanotube films.” Adv.
Mater. 1997, 9, 87-89.
1.92 Ajayan, P. M. “Nanotubes from Carbon.” Chem. Rev. 1999, 99,
1787-1799.
1.93 Baughman, R. H.; Changxing, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J.
N.; Spinks, B. M.; Wallace, G. G.; Mazzoldi, A.; De RossiI, D.; Rinzler, A.
G.; Jaschinski, O.; Roth, S.; Kertesz, M. “Carbon nanotube actuators.”
Science 1999, 284, 1340-1344.
1.94 Sakata, T.; Kamahori, M.; Miyahara, Y. Mater. Sci. Eng., C, 2004, 24,
827-832.
1.95 Roy, S.; Vedala, H.; Choi, W. “Vertically aligned carbon nanotube
probes for monitoring blood cholesterol.” Nanotechnology 2006, 17,
S14-S18.
1.96 Bahr, L. L.; Tour, J. M. “Highly functionalized carbon nanotubes using
in situ generated diazonium compounds.” Chem. Mater., 2001, 13,
3823-3824.
1.97 Dyke, C. A.; Tour, J. M. “Unbundled and Highly Functionalized.
Carbon Nanotubes from Aqueous Reactions.” Nano Lett. 2003, 3,
1215-1218.
1.98 Strano, M. S.; Dyke, C. A.; Usery, M. L.; Barone, P. W.; Allen,
M. J.; Shan, H. W.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E.
104
“Electronic structure control of single-walled carbon nanotube
functionalization.” Science 2003, 301, 1519-1522.
1.99 Strano, M. S.; Huffman, C. B.; Moore, V. C.; O′Connell, M. J.; Haroz,
E. H.; Hubbard, J.; Miller, M.; Rialon, K.; Kittrell, C.; Ramesh, S.; Hauge,
R. H.; Smalley, R. E. “Band-gap-selective protonation of single-walled
carbon nanotubes in solution.” J. Phys. Chem. B 2003, 107, 6979-6985.
1.100 Hu, H.; Zhao, B.; Hamon, M. A.; Kamaras, K.; Itkis, M. E.; Haddon, R.
C. “Dichlorocarbene can be used to functionalize singlewalled nanotubes.”
J. Am. Chem. Soc. 2003,125, 14893-14900.
1.101 Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.;
Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc. 2003, 125,
8566-8580.
1.102 Whitby, M.; Cagnon, L.; Thanou, M.; Quirke, N. “Enhancedfluid flow
through nanoscale carbon pipes.” Nano Lett. 2008, 8, 2632-2637.
1.103 Whitby, M.; Quirke, N. “Fluid flow in carbon nanotubes and nanopipes”
Nature Nanotechnol. 2007, 2, 87-94.
1.104 Liu, Y.; Wang, Q.; Zhang, L. J. Chem. Phys. 2005, 123,
234701-234707.
1.105 Dong, L.; Tao, X.; Hamdi, M.; Zhang, Li.; Zhang, X.; Ferreira, A.;
Nelson, B. J. “Nanotube fluidic junctions: internanotube attogram mass
transport through walls.” Nano Lett. 2009, 9, 210-214.
1.106 In, J.; Seo, K.; Lee,S.; Yoon, H.; Park, J.; Lee, G.; Kim, B.
"Morphology-tuned synthesis of single-crystalline V5Si3 Nanotubes and
nanowires." J. Phys. Chem. C 2009, 113, 12996–13001.
1.107 Solomkin, F. Yu.; Zaitsev, V. K.; Kartenko, N. F.; Kolosova, A. S.;
105
Orekhov, A. S.; Samunin, A. Yu.; Isachenko, G. N. “Crystallization and
properties of CrSi2 single crystals grown from a tin solution-melt.”
Technical Physics, 2010, 55, 151-153.
1.108 Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahh, S.; Cui, Y.;
Cho, J. “ Silicon Nanotube Battery Anodes.” Nano Lett. 2009, 9, 3844-3847.
1.109 Lan, J.; Cheng, D.; Cao, D.; Wang, W. “Canonical Monte Carlo
Simulations.” J. Phys. Chem. C. 2008, 112, 5598-5604.
1.110 Bai, J.; Zeng, X. C.; Tananka, H.; Zeng, J. Y. “Metallic single-walled
silicon nanotubes.” Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 2664- 2668.
Chapter 2: Experimental Procedures
2.1 Preparation of Ordered Si Nanowire Arrays
2.1 Rybczynski, J.; Ebels, U.; Giersig, M. “Large-scale, 2D arrays of magnetic
nanoparticles.” Colloids Surf., A. Physicochem. Eng. Asp. 2003, 219, 1-6.
2.2 Wang, X. D.; Summers, C. J.; Wang, Z. L. “′Large-scale
hexagonal-patterned growth of aligned ZnO nanorods for
nano-optoelectronics and nanosensor arrays.” Nano Lett. 2004, 4, 423-426.
2.3 Kempa, K.; Kimball, B.; Rybczynski, J.; Huang, Z.P.; Wu, P. F.; Steeves,
D.; Sennett, M.; Giersig, M.; Rao, D.V.G.L.N.; Carnahan, D. L.; Wang, D.
Z.; Lao, J.Y.; Li, W.Z.; Ren, Z. F. “Photonic crystals based on periodic
arrays of aligned carbon nanotubes.” Nano Lett. 2003, 3, 13-18.
2.4 Marmur, A. “Wetting on hydrophobic rough surfaces: to be
heterogeneous or not to be?” Langmuir 2003, 19, 8343.
2.5 Whyman, G.; Bormashenko, E.; Stein, T. “The rigorous derivation of
106
Young, Cassie–Baxter and Wenzel equations and the analysis of the
contact angle hysteresis phenomenon.” Chem. Phys. Lett. 2008, 450,
355-359.
Chapter 3 Ordered and Heterosturctured NiSi2 Nanowire
Arrays
3.1 Mozos, J. L.; Wan, C. C.; Taraschi, G.; Wang, J.; Guo, H. “Quantized
conductance of Si atomic wires.” Phys. Rev. B 1997, 56, R4351–4354.
3.2 Hicks, L. D.; Dresselhaus, M. S. “Thermoelectric figure of merit of a
one-dimensional conductor.” Phys. Rev. B 1993, 47, 16631–16634.
3.3 Chen, S.Y.; Yeh, P. H.; Wu,W. W.; Chen, U. S.; Chueh, Y. L.; Yang, Y. C.;
Gwo, S.; Chen, L. J. “Low resistivity metal silicide nanowires with
extraordinarily high aspect ratio for future nanoelectronic devices.” ACS
Nano 2011, 5, 9202–9207.
3.4 Kohandehghan, A.; Kalisvaart, P.; Kupsta, M.; Zahiri, B.; Amirkhiz, B. S.;
Li, Z.; Memarzadeh, E. L.; Bendersky, L. A.; Mitlin, D. “Magnesium and
magnesium-silicide coated silicon nanowire composite anodes for
lithium-ion batteries.” J. Mater. Chem. A 2013, 1, 1600–1612.
3.5 Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J.; Chen, L. J.; Tu, K. N.; Huang, Y.
“Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures,
and nanodevices.” Nano Lett. 2008, 8, 913–918.
3.6 Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. “Single-crystal
metallic nanowires and metal/semiconductor nanowire
heterostructures.” Nature 2004, 430, 61–65.
107
3.7 Dasgupta, N. P.; Xu, S. C.; Jung, H. J.; Iancu, A.; Fasching, R.; Sinclair,
R.; Prinz, F. B. “Nickel silicide nanowire arrays for anti-reflective
electrodes in photovoltaics.” Adv. Funct. Mater. 2012, 22, 3650–3657.
3.8 Schmitt, A. L.; Higgins, J. M.; Szczech, J. R.; Jin, S. “Synthesis and
applications of metal silicide nanowires.” J. Mater. Chem. 2010, 20,
223–235
3.9 Kim, J.; Anderson, W. A. “Direct Electrical Measurement of the
Self-Assembled Nickel Silicide Nanowire.” Nano Lett. 2006, 6, 1356–1359.
3.10 Yuan, F.W.; Wang, C. Y.; Li, G. A; Chang, S. H.; Chu, L. W.; Chen, L.
J.; Tuan, H. Y. “Solution-phase synthesis of single-crystal Cu3Si nanowire
arrays on diverse substrates with dual functions as high-performance field
emitters and efficient anti-reflective layers.” Nanoscale 2013, 5, 9875–9881.
3.11 Valentín, L. A.; Carpena-Nuñez, J.; Yang, D.; Fonseca, L. F. “Field
emission properties of single crystal chromium disilicide nanowires.” J.
Appl. Phys. 2013, 113, 014308–014312.
3.12 Chen, S. Y.; Chen, L. J. “Self-assembled epitaxial NiSi2 nanowires on
Si(001) by reactive deposition epitaxy.” Thin Solid Films 2006, 508,
222–225.
3.13 Liang, S.; Islam, R.; Smith, D. J.; Bennett, P. A. “Phase transformation
in FeSi2 nanowires.” J. Cryst. Growth 2006, 295, 166–171.
3.14 He, Z. A.; Stevens, M.; Smith, D. J.; Bennett, P. A. “Epitaxial titanium
silicide islands and nanowires.” Surf. Sci. 2003, 524,148–156.
3.15 Kim, D. J.; Seol, J. K.; Lee, M. R.; Hyung, J. H.; Kim, G. S.; Ohgai, T.;
Lee, S. K. “Ferromagnetic nickel silicide nanowires for isolating primary
CD4+ T lymphocytes.” Appl. Phys. Lett. 2012, 100, 163703–163706.
108
3.16 Liu, B. Z.; Wang, Y. F.; Dilts, S.; Mayer, T. S.; Mohney, S. E.
“Silicidation of silicon nanowires by platinum.” Nano Lett. 2007, 7,
818–824.
3.17 Szczech, J. R.; Schmitt, A. L.; Bierman, M. J.; Jin, S. “Single-crystal
semiconducting chromium disilicide nanowires synthesized via chemical
vapor transport.” Chem. Mater. 2007, 19, 3238–3243.
3.18 Szczech, J. R.; Jin, S. “Epitaxially-hyperbranched FeSi nanowires
exhibiting merohedral twinning.” J. Mater. Chem. 2010, 20, 1375–1382.
3.19 Song, Y. P.; Schmitt, A. L.; Jin, S. “Ultralong single-crystal metallic
Ni2Si nanowires with low resistivity.” Nano Lett. 2007, 7, 965–969.
3.20 Gao, Y.; Zhou, Y. S.; Qian, M.; Xie, Z. Q.; Xiong, W.; Luo, H. F.; Jiang,
L.; Lu, Y. F. “Fast growth of branched nickel monosilicide nanowires by
laser-assisted chemical vapor deposition.” Nanotechnol. 2011, 22,
235602 –235606.
3.21 Fan, X.; Zhang, H.; Du, N.; Yang, D. “Phase-controlled synthesis of
nickel silicide nanostructures.” Mater. Res. Bull. 2012, 47, 3797–3803.
3.22 Kim, J.; Shin, D. H.; Lee, E. S.; Han, C. S.; Park, Y. C. “Electrical
characteristics of single and doubly connected Ni silicide nanowire grown
by plasma-enhanced chemical vapor deposition.” Appl. Phys. Lett. 2007, 90,
253103–253105.
3.23 Liu, C. Y.; Li, W. S.; Chu, L. W.; Lu, M. Y.; Tsai, C. J.; Chen, L. J.
“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters.”
Nanotechnol. 2011, 22, 055603–055609.
3.24 Han, X. L.; Larrieu, G.; Dubois, E.; Cristiano, F. “Carrier injection at
silicide/silicon interfaces in nanowire based-nanocontacts.” Surf. Sci. 2012,
109
606, 836–839.
3.25 Hsu, H. F.; Huang, W. R.; Chen, T. H.; Wu, H. Y.; Chen, C. A.
“Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing
angle deposition and solid state reaction.” Nanoscale Res. Lett. 2013, 8,
224–230.
3.26 Huang, Z. P.; Fang, H.; Zhu, J. “Fabrication of Silicon Nanowire Arrays
with Controlled Diameter, Length, and Density.” Adv. Mater. 2007, 19,
744–748.
3.27 Mikhael, B.; Elise, B.; Xavier, M.; Sebastian, S.; Johann, M.; Laetitia, P.
“New silicon architectures by gold-assisted chemical etching.” ACS
Appl. Mater. Inter. 2011, 3, 3866–3873.
3.28 D’Heurle, F.; Petersson, S. C.; Stolt, L.; Strizker, B.
“Diffusion in intermetallic compounds with the CaF2 Structure: A marker
study of the formation of NiSi2 thin films.” J. Appl. Phys. 1982, 53,
5678–5681.
3.29 Bennett, P. A.; He, Z.; Smith, D. J.; Ross, F. M. “Endotaxial silicide
nanowires: A review.” Thin Solid Films 2011, 519, 8434–8440.
3.30 Fujitani, H. “First-principles study of the stability of the NiSi2/Si(111)
interface.” Phys. Rev. B 1998, 57, 8801-8804.
3.31 Jiang, S. H.; Xin, Q. Q.; Chen, Y. M.; Lou, H.; Lv, Y. X.; Zeng, W.
“Preparation of NiSi2 nanowires with low resistivity by reaction between Ni
coating and silicon nanowires. Appl. Phys. Express 2009, 2, 075005.
3.32 Juliesa, B. A., Knoesena, D., Pretoriusb, R., Adams, D. "A study of the
NiSi to NiSi2 transition in the Ni-Si binary system." Thin Solid Films 1999,
347, 201-207.
110
3.33 Chen, Y.; Lin, Y. C.; Huang, C. W.; Wang, C. W.; Chen, L. J.; Wu, W.
W.; Huang, Y. “Kinetic competition model and size-dependent phase
selection in 1-D nanostructures.” Nano Lett. 2012, 12, 3115-3120.
Chapter 4 Properties of Ordered and Heterosturctured NiSi2
Nanowire Arrays
4.1 Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. “Nanowire nanosensors for highly
sensitiveand aelective setection of biological and chemical species.”
Science 2003, 293, 630-633.
4.2 Huang, M. H.; Mao, S.; Yan, H.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.;
Yang, P. D. “Room-temperature ultraviolet nanowire nanolasers.” Science
2001, 292, 1897-1899.
4.3 Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M. “Directed assembly of
one-dimensional nanostructures into functional networks.” Science 2001,
291, 630-633.
4.4 Heer, W. A.; Chatelain, A.; Ugarte, D. “A carbon nanotube field emission
electron source.” Science 1995, 270, 1179-1180.
4.5 Tzeng, Y. F.; Lee, Y. C.; Lee, C. Y.; Lin, I. N.; and Chiu H. T. “Ti5Si3
nanowire and its field emission property.” Appl. Phys. Lett. 2007, 91,
063117-063119.
4.6 Wang, C. H.; Lin, H. K.; Ke, T. Y.; Palathinkal, T. J.; Tai, N. H.; Lin, I. N.;
Lee, C. Y.; Chiu, H. T. “Growth of polycrystalline tubular silicon carbide
yajima-type reaction at the vapor−solid interface.” Chem. Mater. 2007, 19,
3956-3962.
111
4.7 Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C.
“Characterization and field-emission properties of needle-like zinc oxide
nanowires grown vertically on conductive zinc oxide films.” Adv. Funct.
Mater. 2003, 13, 811-814.
4.8 Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D.
“TaSi2 nanowires: a potential field emitter and interconnect.” Nano Lett.
2006, 6, 1637-1644.
4.9 Du, J.; Du, P. Y.; Hao, P.; Huang, Y. F.; Ren, Z. D.; Han, G. R.; Weng, W.
J.; Zhao, G. L. “Growth Mechanism of TiSi nanopins on Ti5Si3
by atmospheric pressure chemical vapor deposition.” J. Phys. Chem. C
2007, 111, 10814-10817.
4.10 Seo, K.; Varadwaj, K. S. K.; Cha, D.; In, J.; Kim, J; Park, J.; Kim, B.
“Synthesis and electrical properties of single crystalline CrSi2 nanowires.”
J. Phys. Chem. C 2007, 111, 9072-9076.
4.11 Varadwaj, K. S. K.; Seo, K.; In, J.; Mohanty, P.; Park, J.; Kim, B. J.
“Phase-controlled growth of metastable Fe5Si3 nanowires by a vapor
transport method.” Am. Chem. Soc. 2007, 129, 8594-8599.
4.12 Schmitt, A. L.; Zhu, L.; Schmeiber, D.; Himpsel, F. J.; Jin, S. “Metallic
single-crystal CoSi nanowires via chemical vapor deposition of
single-source precursor.” J. Phys. Chem. B 2006, 110, 18142-18146.
4.13 Song, Y.; Schmitt, A. L.; Jin, S. “Ultralong single-crystal metallic Ni2Si
nanowires with low resistivity.” Nano Lett. 2007, 7, 965-969.
4.14 Chen, S. Y.; Yeh, P. H.; Wu, W.W.; Chen, U. S.; Chueh, Y. L.; Yang,
Y.C.; Gwo, S.; Chen, L. J. “Low resistivity metal silicide nanowires with
extraordinarily high aspect ratio for future nanoelectronic devices.” ACS
112
Nano 2011, 5, 9202–9207.
4.15 Kim, J.; Lee, E. S.; Han, C. S.; Kang, Y.; Kim, D.; Anderson, W. A.
“Observation of Ni silicide formations and field emission properties of Ni
silicide nanowires.” Microelectron. Eng. 2008, 85, 1709-1712.
4.16 Liu, Z.; Zhang, H.; Wang, L.; Yang, D. “Controlling the growth and
field emission properties of silicide nanowire arrays by direct silicification
of Ni foil.” Nanotechnol. 2008, 19, 375602-375605.
4.17 Ok, Y. W.; Seong, T. Y.; Choi, C. J.; Tu, K. N. “Field emission from
Ni-disilicide nanorods formed by using implantation of Ni in Si coupled
with laser annealing.” Appl. Phys. Lett. 2006, 88, 043106-043108.
4.18 Liu, C. Y., Li, W. S., Chu, L. W., Lu, M. Y., Tsai, C. J., Chen, L. J. “An
ordered Si nanowire with NiSi2tip arrays as excellent field emitters.”
Nanotechnology 2011, 22, 055603-055609.
4.19 Hsu, H. F.; Huang, W. R.; Chen, T. H.; Wu, H. Y.; Chen, C. A
“Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing
angle deposition and solid state reaction.” Nanoscale Research Letters 2013,
8, 224-230.
4.20 Han, X. L., Larrieu, G., Dubois, E., Cristiano, F. “Carrier injection at
silicide/silicon interfaces in nanowire based-nanocontacts.” Surface Science
2012, 606, 836-839.
4.21 L. J. Chen, “Metal suicides: an irncgral part of microelectronics.” JOM
2005, 57, 24-30.
4.22 Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; and Chcn,
C. D.; ‘TaSi2 Nanow ires: a potential field emitter and interconnect,” Nano
Lett. 2006, 6, 1637-1644.
113
4.23 Tsai, C. I.; Yeh, P. H.; Wang, C.Y.; Wu, H. W.; Chen, U. S.; Lu, M. Y.
Wu, W. W.; Chen, L. J.; Wang, Z. L. “Cobalt silicide nanostructures:
synthesis, electron transport, and field emission properties.” Crystal Growth
& Design 2009, 9, 4514-4518.
4.24 Liu, Z.; Zhang, H.; Wang, L.; Yang, D. “Controlling the growth and
field emission properties of suicide nanowire arrays by direct silicification
of Ni foil.” Nanovechnol. 2004, 19, 375602-375605.
4.25 Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.;
Chen, L. J. “Free-standing single-crystal NiSi2 nanowires with excellent
electrical transport and field emission properties array.” J. Phys. Chem. C
2009, 113, 2286-2289.
4.26 Lee, C. Y.; Lu, M. Y.; Liao, K. F.; Wu, W. W.; and Chen, L. J.;
“Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent
field emission properties.” Appl Phys. Lett. 2008, 93, 113109-113111.
4.27 Vantomme, A. “Nucleation, diffusion and texture during growth of
CoNi-silicides,” Instituut voor Kern- en Stralingsfysica and INPAC KU
Leuven: Belgium (2007).
4.28 Chiu, W. L.; Chiu, C. H.; Chen, J. Y.; Huang, C. W.; Huang, Y. T.; Lu, K.
C.; Hsin, C. L.; Yeh, P. H.; Wu, W. W. “Single-crystalline δ-Ni2Si nanowires
with excellent physical properties.” Nanoscale Res. Lett. 2013, 8, 290-294.
4.29 Kim, C. J.; Kang, K.; Woo, Y. S.; Ryu, K. G.; Moon, H.; Kim, J. M.;
Zang, D. S.; Jo, M. H. "Spontaneous chemical vapor growth of NiSi
nanowires and their metallic properties." Adv. Mater. 2007, 19 3637-3642.
4.30 Kim, J.; Lee, E. S.; Han, C. S.; Kang, Y.; Kim, D.; Anderson, W. A.
"Observation of Ni silicide formations and field emission properties of Ni
114
silicide nanowires." Microelectron. Eng. 2008, 8, 51709-1712.
4.31 Lee, S.; Yoon, J.; Koo, B.; Shin, D. H.; Koo, J. H.; Lee, C. J.; Kim, Y.
W.; Kim, H.; Lee, T. “Formation of vertically-aligned cobalt silicide
nanowire arrays through a solid-state reaction.” Nanotechnol. IEEE Trans.
(2013) 704-711.
4.32 Lu, C. M.; Hsu, H. F.; Lu, K. C. “Growth of single-crystalline cobalt
silicide nanowires and their field emission property.” Nanoscale Res. Lett.
2013, 8, 308-313.
4.33 Liang, Y. H.; Yu, S.Y.; Hsin, C. L.; Huang, C. W.; Wu, W.W. “Growth of
single-crystalline cobalt silicide nanowires with excellent physical
properties.” J. Appl. Phys. 2011, 110, 074302-074305.
4.34 Lin, H. K.; Tzeng, Y. F.; Wang, C. H.; Tai, N. H.; Lin, I. N.; Lee, C. Y.;
Chiu, H. T. “Ti5Si3 nanowire and its field emission property.” Chem. Mater.
2008, 20, 2429–2431.
4.35 Xiang, B.; Wang, Q.X.; Wang, Z.; Zhang, X. Z.; Liu, L.Q.; Xu, J.; Yu,
D.P. “Synthesis and field emission properties of TiSi2 nanowires.” Appl.
Phys. Lett. 2005, 86, 243103-243106.
4.36 Lin, H.K.; Cheng, H.A.; Lee, C.Y.; Chiu, H.T. “Chemical vapor
deposition of TiSi nanowires on C54 TiSi2 thin film: an amorphous titanium
silicide interlayer assisted nanowire growth.” Chem. Mater. 2009, 21,
5388-5396.
3.23 Liu, C. Y.; Li, W. S.; Chu, L. W.; Lu, M. Y.; Tsai, C. J.; Chen, L. J. "An
ordered Si nanowire with NiSi2 tip arrays as excellent field emitters."
Nanotechnol. 2011, 22, 055603
4.37 Fang, X. S.; Bando, Y.; Gautam, U. K.; Ye, C. H.; Golberg, D.
115
“Inorganic semiconductor nanostructures and their field-emission
applications.” J. Mater. chem. 2008, 18, 509–522.
4.38 Araki, H.; Katayama, T.; Yoshino, K. “Field emission from aligned
carbon nanotubes prepared by thermal chemical vapor deposition of
Fe-phthalocyanine.” Appl. Phys. Lett., 2001, 79, 2636–2639.
4.39 Wu, S. L.; Deng, J. H.; Zhang, T.; Zheng, R. T.; Cheng, G. A. “Tunable
synthesis of carbon nanosheet/silicon nanowire hybrids for field emission
applications.” Diam. Relat. Mater. 2012, 26, 83–88.
4.40 Deng, J. H.; Yu, B.; Li, G. Z.; Hou, X. G.; Zhao, M. L.; Li, D. J.; Ting,
R. Z.; Cheng, G. A. Self-assembled growth of multi-layer graphene on
planar and nanostructured substrates and its field emission properties. RSC
Nanoscale 2013, 5, 12388–12393.
4.41 Ahmad, M.; Rasool, K.; Rafiq, M. A.; Hasan, M. M. “Enhanced and
persistent photoconductivity in vertical silicon nanowires and ZnS
nanoparticles hybrid devices.” Appl. Phys. Lett. 2012, 101, 223103–223104.
4.42 Takai, M., Iriguchi, T., Morimoto, H., Hosono, A., Kawabuchi, S.
“Electron emission from gated silicide field emitter arrays.” J. Vac. Sci.
Technol. B 1998, 16, 790-793.
4.43 Hyung, S. P.; Sang S.P. “Investigation of various metal silicide field
emitters and their application to field emission display.” J. Electrochem. Soc.
2003, 150, H12-H16.
4.44 Ahmed, S. F.; Dasa, S.; Mitrab, M. K.; Chattopadhyaya, K. K. “Low
macroscopic field emission from carbon fibers synthesized plasma enhanced
chemical vapour deposition.” Indian J. Pure. Appli. Phys. 2006, 44,
700-704.
116
4.45 Chi, E. J.; Shim, Jae. Y.; Hong K. B. “Electrical characteristics of metal
silicide field emitters.” IVMC′96., 9th International ,1996 188-191.
4.46 Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P. “Silver
hierarchical bowl-like array synthesis, superhydrophobicity, and optical
properties.” Langmuir 2007, 23, 9802–9807.
4.47 Huang, X. J.; Lee, J. H.; Lee, J. W.; Yoon, J. B.; Choi, Y. K. “A
One-step route to a perfectly ordered wafer-scale microbowl array for
size-dependent superhydrophobicity.” Small 2008, 4, 211–216.
4.48 Wenzel, R. N. “Resistance of solid surfaces to wetting by water.”
Ind. Eng. Chem. 1936, 28, 988-994.
4.49 Wenzel, R. N. “Surface roughness and contact angle.” J. Phys.
Colloid Chem. 1949, 53, 1466–1467.
4.50 Extrand, C. W. “Contact angles and hysteresis on surfaces with
chemically heterogeneous islands.” Langmuir 2003, 19, 3793-3796.
4.51 Wang, J., Bratko, D., Luzar, A. “Probing surface tension additivity on
chemically heterogeneous surfaces by a molecular approach.” Proc. Natl.
Acad. Sci. USA/PNAS 2011, 108, 6374-6379
Chapter 5 Preparation of Ordered NiSi2 Silicide Nanotube
Arrays and Its Electrical Properties
5.1 Nagesha, D. K.; Whitehead, M. A.; Coffer, J. L. “Bio relevant
Calcification and Non-cytotoxic Behavior in Silicon Nanowires. “Biorelevant
calcification and non-cytotoxic behavior in silicon nanowires.” Adv. Mater.
2005, 17, 921−924.
117
5.2 Gao, R.; Strehle, S.; Tian, B.; Cohen-Karni, T.; Xie, P.; Duan, X.;
Qing, Q.; Lieber, C. M. “Outside looking in: Nanotube transistor
intracellular sensors.” Nano Lett. 2012, 12, 3329−3333.
5.3 Ben Ishai, M.; Patolsky, F. “Tube-in-tube and wire-in-tube nano
building blocks: towards the realization of multifunctional nanoelectronic
devices.” Angew. Chem., Int. Ed. 2009, 48, 8699−8702.
5.4 Ben Ishai, M.; Patolsky, F. “Wall-selective chemical alteration of
silicon nanotube molecular carriers.” J. Am. Chem. Soc. 2011, 133,
1545−1552.
5.5 Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. “Scalable fabrication of
silicon nanotubes and their application to energy storage.” Adv.Mater. 2012,
24, 5452−5456.
5.6 Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.;
Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. “Stable cycling of
double-walled silicon nanotube battery anodes through solid−
electrolyte interphase control.” Nat. Nanotechnol. 2012, 7, 310−315.
5.7 Patzke, G. R.; Krumeich, F.; Nesper, R. “Oxidic nanotubes and nanorods
-Anisotropic modules for a future nanotechnology.” Angew. Chem., Int. Ed.
2002, 41, 2446–2461.
5.8 Martin, C. R. “Nanomaterials: a membrane-based synthetic approach.”
Science 1994, 266, 1961–1966.
5.9 Fagan, S. B.; Baierle, R. J.; Mota, R.; da Silva, A. J. R.; Fazzio, A.
Phys. ReV. B “Ab initio calculations for a hypothetical material: Silicon
nanotubes.” 2000, 61, 9994–9996.
5.10 Sha, J.; Niu, J.; Ma, X.; Xu, J.; Zhang, X.; Yang, Q.; Yang, D.
118
“Silicon Nanotubes.” Adv. Mater. 2002, 14, 1219−1221.
5.11 Quitoriano, N. J.; Belov, M.; Evoy, S.; Kamins, T. I. “Single-crystal, Si
nanotubes, and their mechanical resonant properties.” Nano Lett. 2009, 9,
1511−1516.
5.12 Zhang, Z.; Liu, L.; Shimizu, T.; Senz, S.; Gösele, U. “Synthesis of
silicon nanotubes with cobalt silicide ends using anodized aluminum oxide
template.” Nanotechnol. 2010, 21, 055603.
5.13 Seifert, G.; Kohler, T.; Urbassek, H. M.; Hernandez, E.; Frauen-Heim,
T. “Tubular structure of silicon.” Phys. ReV. B 2001, 63, 193409-193413.
5.14 Zhang, M.; Kan, Y. H.; Zang, Q. J.; Su, Z. M.; Wang, R. S. “Why
silicon nanotubes stably exist in armchair structure?” Chem.Phys. Lett. 2003,
379, 81–86.
5.15 In, J.; Seo, K.; Lee,S.; Yoon, H.; Park, J.; Lee, G.; Kim, B.
“Morphology-tuned synthesis of single-crystalline V5Si3 Nanotubes and
nanowires.” J. Phys. Chem. C 2009, 113, 12996–13001.
5.16 Huang, Z. P.; Fang, H.; Zhu, J. Fabrication of Silicon Nanowire Arrays
with Controlled Diameter, Length, and Density. Adv. Mater. 2007, 19,
744–748.
5.17 Ben-Ishai, M.; Patolsky, F. “Shape and dimension-controlled
single-crystalline silicon and SiGe nanotubes: towards nanofluidic
FET devices.” J. Am. Chem. Soc.2009, 131, 3679-3689.
5.18 Yu-Sheng Lin ; “Wafer-level fabrication of nanoscale patterned sapphire
substrates with broadband optical transmittance” Solid-State Sensors,
Actuators and Microsystems Conference (Transducers), 2011 16th
International 641–644.
119
5.19 Chen, Z. H.; Tang, H.; Fan, X.; Jie, J. S.; Lee, C. S.; S. T. Lee
“Epitaxial ZnS/Si core–shell nanowires and single-crystal silicon tube
field-effect transistors.” Journal of Crystal Growth 2008, 310, 165-170.
5.20 Liu, H.; She, G.; Mu, L.; Shi, W. “Temperature-dependent
photoluminescence properties of porous silicon nanowire arrays.” Materials
Research Bulletin 2012, 47, 3991-3994.
5.21 Geyer, N.; Fuhrmann, B.; Huang, Z.; de Boor, J.; Leipner, H. S.;
Werner, P. “Model for the mass transport during Metal-Assisted Chemical
etching with contiguous metal films as catalysts.” The Journal of Physical
Chemistry C 2012, 116 , 13446-13451.
5.22 Zhi, C. Y.; Bai, X. D.; Wang, E. G. “Enhanced field emission from
carbon nanotubes by hydrogen plasma treatment.” Appl. Phys. Lett. 2002,
81, 1690-1692.
5.23 Yao, R.H; She, J.C. ; Deng, S.Z. ; Jun Chen ; Xu, N.S. “Field emission
from vertically aligned silicon nanotubes.” Vacuum Nanoelectronics
Conference, IVNC. IEEE 20th International, 2007,133 – 134
5.24 Shearer, C. J; Fahy, A.; Barr, M.; Dastoor, P. C.; Shapter, J. G.
“Improved field emission stability from single-walled carbon
nanotubes chemically attached to silicon.” Nanoscale Research Letters
2012, 7, 432-435.
5.25 Watts, P. C. P.; Lyth, S. M.; Mendoza, E.; Silva, S. R. P. “Polymer
supported carbon nanotube arrays for field emission and sensor devices.”
Appl. Phys. Lett. 2006, 89, 103113-103115.
5.26 Yang, C. J.; Chen, C. “Characterization and field-emission properties of
carbon nanotube arrays in nanoporous alumina template and on blank Si
substrate.” J. Appl. Phys. 2006, 100, 104302-104307
120
5.27 R. H. Fowler and L. W. Nordheim, “Electron emission in intense
electric fields.” Proc. R. Soc. London, Ser. A 1928, 119, 173-181.
5.28 I. S. Altman, P. V. Pikhitsa, and M. Choic, “Electron field emission
from nanocarbons: A two-process model.” Appl. Phys. Lett. 2004, 84,
1126-1128.
5.29 Martin, C. R. “Nanomaterials - a membrane-based synthetic approach.”
Science 1994, 266, 1961–1966.
5.30 Chen, H. S.; Qi, J. J.; Zhang, Y.; Zhang, X. M.; Liao, Q. L.; Huang, Y.
H. “Controlled growth and field emission properties of zinc oxide
nanopyramid arrays.” Appl. Surf. Sci. 2007, 253, 8901-8904.
Chapter 6 Future Prospects
6.1 Synthesis and I-V Properties of Aligned Single-Crystal
NiSi2 Nanowires
6.1 Mozos, J. L.; Wan, C. C.; Taraschi, G.; Wang, J.; Guo, H. “Quantized
conductance of Si atomic wires.” Phys. Rev. B 1997, 56, R4351-4354.
6.2 Uosaki, K.; Okazaki K.; Kita H.; Takahashi, H. “Preparative method for
fabricating a microelectrode ensemble: electrochemical response of
microporous aluminum anodic oxide film modified gold electrode.” Anal.
Chem. 1990, 62, 652-656.
6.3 Martin, C. R. “Nanomaterials - a membrane-based synthetic approach.”
Science 1994, 266, 1961-1966.
6.4 Xue, Z. Q. (ed) Molecular Electronic Devices (Beijing: Peking University
121
Press) 2003, 272–300.
6.5 Gimzewski, J. K.; Joachim, C. “Nanoscale science of single molecules
using local probes.” Science 1999, 283, 1683-1688.
6.6 Wild¨oer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker,
C. “Electronic structure of atomically resolved carbon nanotubes.” Nature
1998, 391, 59-62.
6.7 Luo, J.; Huang, Z.; Zhao, Y.; Zhan,g L.; Zhu, J. “Arrays of heterojunctions
of Ag nanowires and amorphous carbon nanotubes.” Adv. Mater. 2004, 16,
1512-1515.
6.8 Peng, K. Q.; Huang, Z. P.; Zhu, J. “Fabrication of largearea silicon
nanowirep–njunction diode arrays.” Adv. Mater. 2004, 16, 73-76.
6.9 Jung, J. Y.; Guo, Z.; Jee, S. W.; Um, H. D.; Park, K. T.; Hyun, M. S.; Yang,
J. M.; Lee, J. H. "A waferscale Si wire solar cell using radial and bulk p–n
junctions." Nanotechnol. 2010, 21, 445303.
6.10 Han, S. E.; Chen, G. “Toward the lambertain limit of light trapping in
thin nanostructured silicon solar cells.” Nano Lett. 2010, 10, 4692-4696
6.11 Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans,
D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis,
N. S.; Atwater, H. A. “Enhanced absorption and carrier collection in Si wire
arrays for photovoltaic applications.” Nature Mater. 2010, 9, 239-244.
6.12 Lu, Y. La, A. “High-efficiency ordered silicon nano conical frustum
array solar cells by self –powered parallel electron lithography.” Nano Lett.
2010, 10, 4651-4656
指導教授 鄭紹良 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明