博碩士論文 953903006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.88.130
姓名 郭俊麟(Chun-Lin Kuo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用CBD法製備銅摻雜之硫系列光觸媒材料研究
(The Synthesis of Cu-Doped Photocatalyst Materials by Chemical Bath Deposition)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用化學水浴法(Chemical Bath Deposition; CBD)進行可見光光觸媒薄膜之製備,以ITO(Indium–Tin-Oxide)導電玻璃為基材,利用此種製程於基材表面先形成一層AgInS光觸媒薄膜,再利用氯化銅進行銅金屬摻雜。而本研究著重於提升半導體薄膜的光敏化效果,試著改變反應溶液pH值與反應時間之鍍膜參數,並將試片置於真空管狀爐中以300 oC燒結1小時。材料分析部分以X-ray繞射儀(XRD)判別薄膜的晶型結構,利用掃描式電子顯微鏡(SEM)來觀察薄膜表面形貌與元素之半定量分析;並利用電化學量測儀以三極式之方式量測光電流,探討光觸媒的成分組成對光電流之影響。
摘要(英) The visible-active Photocatalyst thin film of AgInS was deposition on ITO glass and doping Cu by CuCl2 solution by chemical bath deposition (CBD).
The research conditions was change the ph value and reaction time and anneal time of the reaction solution and elevation photo-active of the photocatalyst.
The material structure analysis by XRD and element analysis by scanning electron microscope (SEM) ;The photocurrent measurement by potentiostat and discussion the element compose by photocurrent effect of photocatalyst.
關鍵字(中) ★ 薄膜
★ 光觸媒
★ 化學水浴法
關鍵字(英) ★ Chemical Bath Deposition
★ Photocatalyst
★ CBD
★ Thin film
論文目次 中文摘要………………………………………………………………....I
Abstract…………………………………………………………...……...II
致謝………………………………………………………......................III
表目錄………………………………………………………………….VII
圖目錄 …………………………………………………………….…VIII
符號說明……………………………………………………………..…XI
第一章 緒論………………………………..............................................1
1.1 前言………………………………………………………......… 1
1.2 太陽能產氫原理…………….…………………………………..3
1.3 光觸媒發展歷史………………………………………………...6
1.4 文獻回顧………………………………………………………...7
1.4.1 薄膜之製備………………………………………………..7
1.4.2 化學水浴法原理…………………………………………..8
1.4.3 以化學水浴法製備半導體薄膜之文獻回顧……………11
1.4.3.1 Cu2S半導體薄膜文獻回顧……………………....11
1.4.3.2 AgInS半導體薄膜文獻回顧…………………….12
1.5 研究目的……………………………………………………….13
第二章 實驗部分 …………………………………………………......14
2.1 實驗參數設定及流程…………….………………………....…14
2.2 實驗藥品材料與實驗裝置.........................................................14
2.2.1 實驗藥品............................................................................14
2.2.1.1 化學水浴法中AgInS之薄膜材料.......................14
2.2.1.2 硫系列薄膜摻雜金屬離子之藥品.......................16
2.2.1.3 電性分析時所使用之電解質溶液.......................17
2.2.2 實驗基材............................................................................17
2.2.3 實驗設備............................................................................17
2.2.4 實驗步驟............................................................................18
2.2.4.1 基材清洗...............................................................18
2.2.4.2 鍍液調配...............................................................19
2.2.4.3 鍍液反應流程.......................................................20
2.3 試片完成後處理……………………………………………….22
2.4 薄膜物性量測分析…………………………………………….22
2.4.1 XRD(X-ray 繞射儀)……………………………………...22
2.4.2 SEM(掃描式電子顯微鏡)………………………………..23
2.4.3 EDS(能量散布質譜儀)…………………………………...24
2.4.4 UV-visible…………………………………………………24
2.4.5 Hall Effect Measurement………………………………….25
2.5 薄膜之電性分析.........................................................................26
2.6 薄膜厚度分析………………………………………………….27第三章 結果與討論……………………………………………………28
3.1.1 金屬離子濃度比例對薄膜之影響..........................................29
3.1.2 燒結溫度不同對於薄膜之影響..............................................31
3.1.3 鍍膜層數不同對於薄膜之影響..............................................32
3.1.4 銅摻雜量多寡對薄膜之影響..................................................33
3.1.5 銅離子溶液之pH值對於薄膜之影響.....................................34
第四章 結論與未來展望........................................................................36
4.1 結論.............................................................................................36
4.2 未來展望.....................................................................................37
參考文獻..................................................................................................38
參考文獻 [1]工研院氫能計畫期末執行報告書 (2006) pp.3-4
[2] Fujishima, A.; Honda, K. “Electrochemical Photolysis of Water at a Electrode”, Nature Vol.63, pp.37-38 (1972).
[3] Wenham SR, Green MA, Watt ME. Applied photovoltaics, Centre for
Photovoltaic Devices and Systems, Sydney,.pp. 239–46 (1994).
[4] Sayama, K.; Arakawa, H. “Photocatalytic Decomposition of water and photocatalytic reduction of carbon-dioxide over ZrO2 catalyst” J. Phys. Chem.,Vol.97, pp.531 (1993).
[5] Gratzel, M., “Photoelectrochemical cells”, Nature, Vol.414, pp.338 (2001).
[6] Andreas Luzzi , “Photoelectrolytic Production of Hydrogen Final
Report : Annex-14” , (2004).
[7] Zou, Z., Ye, J., Sayama, K.,Arakawa, H. "Direct splitting of
water under visible light irradiation with an oxide semiconductor
photocatalyst", Nature Vol.414, pp.625-627 (2001).
[8] Furlong, M.J., M. F., Bernard, M.C., Cortès, R., Tiwari, A.N., Krejci, M., Zogg, H. and Lincot, D. "Aqueous solution epitaxy of CdS layers on CuInSe 2." Journal of Crystal Growth Vol.193(1-2), pp.114-122 (1998)
[9] Malinowska. B., Rakib, M., Durand, G., "Ammonia recycling and cadmium confinement in chemical bath deposition of CdS thin layers." Progress in Photovoltaics: Research and Applications Vol.9(5 ), pp.389 – 404 (2001).
[10] Nair, P.K., M. T. S. N., Garcia, V.M., Arenas, O.L., Pena, Y., Castillo, A., Ayala, I.T., Gomezdaza, O., Sanchez, A., Campos, J., and Hu, R. S. H., Rincon, M.E., "Semiconductor thin films by chemical bath deposition for solar energy related applications." Solar Energy Materials and Solar Cells Vol.52, pp.313 – 344 (1998).
[11] Lokhande, C.D., Ennaoui, A., Patil, P.S., Giersig, M., Diesner, K.,
Muller, M., Tributsch, H., “Chemical bath deposition of indium sulphide
thin films: preparation and characterization”, Thin Solid Films Vol.340,
pp.18-23 (1999).
[12] Antony, A., Murali, K.V., Manoj, R., Jayaraj, M.K. Materials.
” The effect of the pH value on the growth and properties of
chemical-bath-deposited ZnS thin films”, Chemistry and Physics Vol.90,
pp.106–110 (2005).
[13] Laniecki, M., Glowacki, R. "Photocatalysis as a tool in hydrogen
generation",15th World Hydrogen Energy Conference, Yokohama, Japan.
(2004)
[14] Jie-Fang Zhu, Ying-Jie Zhu, Ming-Guo Ma, Li-Xia Yang, and Lian
Gao, “ A Simple One-Pot Self-Assembly Route to Nanoporous and Monodispersed Fe3O4 Particles with Oriented Attachment Structure and Magnetic Property”, J. Phys. Chem. C. Vol.111, pp.3920-3926 (2007).
[15] Savelli M and Bougnot J. Solar Energy Conversion, Topics in
Applied Physics 31 ed B 0 Seraphin (Berlin: Springer) pp.213, (1979).
[16] Okamoto K and Kawai S Japan. 1. Appl. Phys. Vol.12, pp.1130 (1973).
[17] Couve S, Gouskov L, Szepessy L, Vedel J and Castel E.
“Resistivity and optical transmission of CuxS layers as a function of
composition”, Thin Solid Films Vol.15, pp.223 (1973).
[18] Reynolds D C, hies G, Antes L T and Marburger R E. Phys. Rev.
Vol.96, pp.533 (1954).
[19] Rothwarf A, Meakin J D and Barnett A M. “Polycrystalline and
Amorphour Thin Films and Devices”, ed L L Kazmenki (New York
Academic) pp.229 (1980)
[20] Fahrenbruch A L and Bube R H. Fundamentals of Solar Cells (New York: Academic) pp.417 (1983)
[21] Cbonra K L and Das S R. Thin Film Solar Cells (New York: Plenum) (1983).
[22] oldenblum, G., Pooovici, A., Elena, G., Onrea, E and Nae C, A.,
“All-evaporation-processed Cu2S/CdS solar cells with improved
characteristics”, Thin Solid Films. Vol.141, pp.215 (1986).
[23] Vanhoecke E, Burgelman M and Anaf L. “” Reactive sputtering of
large-area Cu2S/CdS solar cells”, Thin Solid Films. Vol.144, pp.223
(1986).
[24] Orlova, N. S., Bodnar, I. V., Kudritskaya, E. A., Cryst. Res. Technol
Vol.33, pp.37-42 (1998).
[25] Liudmila V. Makhova, I. Konovalov, and R. Szargan, phys. stat. sol.
(a) Vol.201, No. 2, pp.308– 311 (2004).
[26] Qasrawi, A. F., Gasanly, N. M., Cryst. Res. Technol Vol.36, pp.4-5
(2001).
[27] 材料世界網-電子報,
http://www.materialsnet.com.tw/ePaperNewest.aspx?id=291
[28] Albor Aquilera, M.L., Aquilar Hernandez, J., Orteqa-Lopez, M.,
Sanchez, V.M., Gonzalez Trujillo, M.A., “Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films prepared by spray pyrolysis”, Mat. Sci. Eng. B Vol.102, pp380–384 (2003).
[29] Gall, S., Barreau, N., Harel, S., Bernede, J.C., Kessler, J., “Material
analysis of PVD-grown indium sulphide buffer layers for
Cu(In,Ga)Se2-based solar cells”, Thin Solid Films Vol.480–481,
pp.138–141 (2005).
[30] Sartale, S.D., Sankapal, B.R., Lux-Steiner, M., Ennaoui, A.,
“ Preparation of nanocrystalline ZnS by a new chemical bath deposition
route”, Thin Solid Films Vol.480–481, pp.168–172 (2005).
[31] Mane, R.S., Sankapal, B.R., Lokhande, C.D., “ Non-aqueous chemical
bath deposition of Sb2S3 thin films”, Thin Solid Films Vol.353,
pp.29–32 (1999).
[32] Mane, R.S., Todkar, V.V., Lokhande, C.D., Appl. Surf. Sci. Vol.227, pp.48–55 (2004).
[33] Y.B. He, Polity, A., Alves, H.R., Osterreicher, I., Kriegseis, W.,
Pfisterer, Meyer, B.K., Hardt M., “Structural and optical characterization
of RF reactively sputtered CuInS2 thin films”, Thin Solid Films
Vol.403–404, pp.62–65 (2002).
[34] Muller, K., Milko, S., Schmeiber, D., “Preparation of stoichiometric
CuInS2 surfaces—an XPS and UPS study”, Thin Solid Films
Vol.431–432, pp.312–316 (2003).
[35] Deivaraj, T. C.; Park, J.-H.; Afzaal, M.; O’Brien, P.; Vittal, J.
“Single-source precursors to ternary silver indium sulfide materials”, J.
Chem. Commun. Vol.22, pp.2304–2305 (2001).
[36] Deivaraj, T. C.; Park, J.-H.; Afzaal, M.; O’Brien, P.; Vittal, “Novel
bimetallic thiocarboxylate compounds as single-source precursors to
binary and ternary metal sulfide materials”, J. Chem.Mater. Vol.15,
pp.2383–2391 (2003).
[37] Banger, K. K.; Jin, M. H.-C.; Harris, J. D.; Fanwich, P. E.; Hepp,
A. F. “ A new facile route for the preparation of single-source precursors
for bulk, thin-film, and nanocrystallite 1-3-6 semiconductors”, Inorg.
Chem. Vol.42, pp.7713–7715 (2003).
[38] Dona, J. M.; Herrero, J. “Process and film characterization of chemical-bath-deposited ZnS thin films”, J. Electrochem. Soc. Vol.141,
pp.205–210 (1994).
[39] Froment, M.; Lincot, D. “Phase formation processes in solution at the atmoic level: metal chalcogenide semiconductors”, Electrochim. Acta. Vol.40, pp.1293–1303 (1995).
[40] Meherzi-Maghraoui, H.; Dachraoui, M.; Belgacem, S.; Buhre, K. D.;
Kunst, R.; Cowache, P.; Lincot, D. “Structural, optical and transport
properties of Ag2S films deposited chemically from aqueous solution
Thin Solid Films. Vol.288, pp.217–223 (1996).
[41] Breen, M. L.; Woodward, J. T.; Schwartz, D. K.; Apblett, A. W.
“ Direct evidence for an ion-by-ion deposition mechanism in solution
growth of CdS thin films”, Chem. Mater. Vol.10, pp.710–717 (1998).
[42] O’Brien, P.; McAleese, J. “ Developing an understanding of the process controlling the chemical bath deposition of ZnS and CdS”, J. Mater. Chem. Vol.8, pp.2309–2314 (1998).
[43] Lokhande, C. D.; Ennaoui, A.; Patil, P. S.; Giersig, M.; Diesner, K.;
Muller, M.; Tributsch, H. Thin Solid Films. Vol.340, pp.18–23 (1999).
[44] Mane, R. S.; Lokhande, C. D. “ Chemical deposition method for metal
chalcogenide thin films”, Mater. Chem. Phys. Vol.65, pp.1–31 (2000).
[45] Kostoglou, M.; Andritsos, N.; Karabelas, A. J. “ Incipient CdS thin film
formation”, J. Colloid Interface Sci. Vol.263, pp.177–189 (2003).
[46] Govender, K.; Boyle, D. S.; O’Brien, P. “ Developing cadmium-free
window layers for solar cell applications: some factors controlling the
growth and morphology of b-indium sulfide thin films and related (In,
Zn)S ternaries”, J. Mater. Chem. Vol.13, pp.2242–2247 (2003).
[47] Pathan, H. M.; Lokhande, C. D. “ Chemical deposition and characterization of copper indium disulphide thin films”, Appl. Surf. Sci. Vol.239, pp.11–18 (2004).
[48] Salem, A. M.; El-Ghazzawi, M. E. ” Structural and optical properties of
chemically deposited CdCr2S4 thin films”, Semicond. Sci. Technol.
Vol.19, pp.236–241 (2004).
[49] Rodrigues, A. N.; Nair, M. T. S.; Nair, P. K. ” Structural, optical and
electrical properties of chemically deposited silver sulfide thin films”,
Semicond. Sci. Technol. Vol.20, pp.576–585 (2005).
[50] Yahmadi, B.; Kamoun, N.; Bennaceur, R.; Mnari, M.; Dachraoui, M.;
Abdelkrim, K. “Structural analysis of indium sulphide thin films
elaborated by chemical bath deposition”, Thin Solid Films. Vol.473,
pp.201–207 (2005).
[51] N. S. Orlova, I. V. Bodnar, E. A. Kudritskaya, “Crystal growth and
properties of the CuIn5S8 and AgIn5S8 compounds”, Cryst. Res.
Technol. Vol.33, pp.37-42 (1998).
[52] Liudmila V. Makhova, I. Konovalov, and R. Szargan, “Growth and
characterization of AgIn5S8 and CuIn5S8 thin films”, phys. stat. sol.
(a) Vol.201, No. 2, pp.308– 311 (2004).
[53] A. F. Qasrawi, N. M. Gasanly, “Crystal data, photoconductivity and
carrier scattering mechanisms in CuIn5S8 single crystals”, Cryst. Res.
Technol Vol.36, pp.4-5 (2001).
[54] Nair P K and Nair M T S. Semicond. Sci. Technol. Vol.4, pp.807
(1989).
[55] Issei Tsuji, Hideki Kato, and Akihiko Kudo, “Photocatalytic Hydrogen
Evolution on ZnS-CuInS2-AgInS2 Solid Solution Photocatalysts with
Wide Visible Light Absorption Bands” Chem. Mater. Vol.18,
pp.1969-1975 (2006).
[56] Issei Tsuji, Hideki Kato, Hisayoshi Kobayashi, and Akihiko Kudo, “Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures” J. Am. Chem. Soc. Vol.126, pp.13406-13413 (2004).
[57]工業技術研究院氫能計畫96年執行報告書 (2007)
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明