博碩士論文 954208006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:52.23.219.12
姓名 黃崇銓(Chung-chuan Huang)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 Model-Free隱含波動度價差之遠期資訊
(Forward Information from Model-Free Implied Volatility Spread)
相關論文
★ 國內股票型共同基金異常報酬之特徵研究★ 台灣境外高收益債券型基金績效分析
★ 財富管理客戶選擇銀行之因素探討★ 境外匯回專法實施前後境外資金解決方案比較-以個案分析為例
★ 歐元對歐洲股票市場整合之影響:產業實證分析★ 選擇權交易與標的資產報酬及標準差之關係
★ Copula-based GARCH模型於期貨避險之應用★ GARCH-jump模型預測波動性之準確度
★ 利用隨機優勢方法探究商品指數之投資績效★ 承銷關係是否會影響未來承銷業務?
★ 併購動能:以台灣市場為例★ 機構法人對股票報酬與公司價值之影響
★ 個股選擇權市場的流動性不足貼水與波動度差★ 投資者情緒與期貨價格關聯性
★ 一般化自我迴歸條件異質變異數模型在不同分配假設下對波動度與價格分配預測之表現★ 選擇權市場的資訊內涵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文藉由S&P 500指數選擇權契約價格,各自計算出買權Model-Free隱含波動度與賣權Model-Free隱含波動度,並且定義出Model-Free隱含波動度價差(Model-Free Implied Volatility Spread)。隨後利用波動度價差的數值,幫助我們探討其價格發現的能力,亦即波動度價差對於未來市場報酬,與未來市場波動度的關聯性。藉由將波動度價差分組,我們發現在極端波動度價差的分組下,在未來皆能獲得顯著異於零的報酬,且皆遠高於市場平均日報酬數倍之多。此外我們還發現波動度價差與未來波動度變化的反向關係。最後在不對稱的波動關係下,低波動度價差分組在未來所面臨的波動風險反而高於高波動度價差分組。顯示投資人若同時考量投資報酬與投資風險,高波動度價差分組較具投資的吸引力。因此本文發現Model-Free隱含波動度價差所涵之遠期資訊,不僅具有價格發現的功能,同時具有輔助波動風險控管的能力。
摘要(英) In this article, we use the contract prices of S&P 500 index option to calculate the model-free implied volatility of call and put respectively, and define the Model-Free Implied Volatility Spread, MFIVS. We then explore MFIVS’s ability in the price discovery of the underlying, namely the relationships between MFIVS and future market returns as well as its future volatility. After grouping and sorting the volatility spread, we find taking advantage of the information from the extreme groups will have significant higher return than the average market return in the future. Besides, we also find that there is a negative relationship between volatility spread and the change of future volatility. Given the asymmetric impact of volatility spread to future volatility, the group of low volatility spread will face higher volatility risk than the higher ones, which implies that investing in the group of high volatility spread will end up with higher return while at lower risk. To sum up, we find that the forward information embeds in MFIVS is relevant in both the pricing discovery and volatility risk management.
關鍵字(中) ★ 遠期資訊
★ 價格發現
★ Black-Scholes隱含波動度
★ Model-Free隱含波動度
★ Black-Scholes隱含波動度價差
★ Model-Free隱含波動度價差
關鍵字(英) ★ Forward Information
★ Price Discovery
★ Black-Scholes Implied Volatility
★ Model-Free Implied Volatility
★ Black-Scholes Implied Volatility Spread
★ Model-Free Implied Volatility Spread
論文目次 中文摘要 ……………………………………………………… i
英文摘要 ……………………………………………………… ii
誌謝 ……………………………………………………… iii
目錄 ……………………………………………………… iv
圖目錄 ……………………………………………………… v
表目錄 ……………………………………………………… vi
第一章 緒論與文獻探討…………………………………… 1
第二章 研究方法…………………………………………… 5
2-1 Model-Free隱含波動度…………………………… 5
2-2 Model-Free隱含波動度價差……………………… 7
2-3 Model-Free隱含波動度價差與報酬率…………… 9
2-4 Model-Free隱含波動度價差與波動度…………… 11
第三章 資料來源…………………………………………… 13
第四章 實證結果…………………………………………… 23
4-1 Model-Free隱含波動度價差與未來報酬關係…… 23
4-2 Model-Free隱含波動度價差與未來波動關係…… 32
4-3 Model-Free隱含波動度價差對未來報酬與未來波
動度的綜合關係……………………………………
37
4-4 Model-Free與Black-Scholes隱含波動度價差比較 43
第五章 結論………………………………………………… 47
參考文獻 ……………………………………………………… 49
附錄 ……………………………………………………… 51
參考文獻 Banerjee, P., Doran, J. S., and Peterson, D. R., 2007, “Implied Volatility and Future Portfolio Returns.” Journal of Banking and Finance, 31, pp. 3183-3199.
Black, F., 1976, "Studies of Stock Price Volatility Changes," Proceedings of the 1976
Meetings of the American Statistical Association, Business and Economic Statistics, pp. 177-181.
Britten-Jones, M., and Neuberger, A., 2000, “Option Prices, Implied Price Processes, and Stochastic Volatility.” Journal of Finance, 55, pp. 839-866.
Campbell, J. Y. and Hentschel, L. 1992, "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," Journal of Financial Economics, 31, pp. 281-331.
Carr, P. and Wu, Liuren, 2006, “A Tale of Two Indices.” Journal of Derivatives, 13, pp. 13-29.
CBOE. “The VIX White Paper.” Chicago Board Options Exchange,
URL: http://www.cboe.com/micro/vix/vixwhite.pdf, 2003.
Cremers, M. and Weinbaum D., 2007, “Deviation from Put-Call Parity and Stock Return Predictability.” Working paper.
Christie, A. A., 1982, “The Stochastic Behavior of Common Stock Variances - Value,
Leverage and Interest Rate Effects,” Journal of Financial Economics, 3, pp. 145-166.
Daigler, R. and Rossi, L., 2006, “A Portfolio of Stocks and Volatility.” Journal of Investing, 15, pp. 99-106.
Demeterfi, K., Derman, E., Kamal, M., and Zhou, J., 1999, “A Guide to Variance and Volatility Swaps,” Journal of Derivatives, 6, pp. 9-32.
Easley, D., O’hara, M., and Srinivas, P. S., 1998, “Option Volume and Stock Prices: Evidence on Where Informed Traders Trade,” Journal of Finance, 53, pp. 431-465.
Hull, J. C., 2006, “Options, Futures, and Other Derivatives.” Sixth Edition, Prentice Hall.
Giot, P., 2005, “Relationships between Implied Volatility Indexes and Stock Index
Returns,” Journal of Portfolio Management, 31, pp. 92-100.
Jiang, G. J. and Tian, Y. S., 2005, “The Model-Free Implied Volatility and Its Information Content.” Review of Financial Studies, 18, pp. 1305-1342.
Jiang, G. J. and Tian, Y. S., 2007, “Extracting Model-Free Volatility from Option Prices: An Examination of the VIX Index.” Journal of Derivatives, 14, pp. 35-60.
Poon, S. H. and Granger, C. W., 2003, “Forcasting Volatility in Financial Markets: A Review, ” Journal of Economic Literature, 41, pp. 478-539.
Taylor, S. J., 2005, “Asset Price Dynamics, Volatility, and Prediction.” Princeton University Press.
Whaley, R. E., 1993, “Derivatives on Market Volatility: Hedging Tools Long Overdue,” Journal of Derivatives, 1, pp. 71-84.
Whaley, R. E., 2000, “The Investor Fear Gauge,” Journal of Portfolio Management, 26, pp. 12-17.
指導教授 王耀輝、葉錦徽 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明