博碩士論文 954304002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.81.28.94
姓名 許光昇(Kuang-Shen Hsu)  查詢紙本館藏   畢業系所 產業經濟研究所在職專班
論文名稱 中小企業案件逾期放款之預測
(The Prediction of Overdue Loans for Small and Medium Enterprises)
相關論文
★ 經發會前後台股指數、期貨指數、電子指數與金融指數之關聯性★ 期間利差與經濟衰退之預測模型-理性預期假設之驗證
★ 台灣、美國總經月數據與台股股價指數之關聯性★ 台灣資訊電子產業異質性及利潤率之探討
★ 台灣半導體產業經營效率分析-三階段資料包絡分析法之應用★ 台灣車輛產業經濟附加價值之研究-兼論影響信通交通器材公司經濟附加價值之因素
★ 外人直接投資與研發活動之關聯性-台灣電子相關產業之實證研究★ 消費性信用貸款授信評量模式之研究
★ 二順位房貸產品風險預警分析★ 新產品商業化流程之個案研究–以美商3M公司為例
★ 國際原油投資報酬與資金行情之探討-GARCH模型★ 電子商務對企業經營績效之影響
★ 高淨值客戶風險屬性與共同基金投資報酬率之實證研究★ 台灣加權指數與指數股票型基金風險值之歷史模擬法分析
★ 國際油價、匯率與利率之動態關聯—VECM與VECM-GARCH之應用★ 主流記憶體之二十年價格模式研究與驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 依據最新2007年中小企業白皮書(White Paper On Small And Medium Enterprises In Taiwan)統計報告指出,中小企業家數佔全體企業家數比例97.77%,在台灣的經濟發展中佔有相當重要的角色。雖然銀行近年推展中小企業放款業務,但金融機構放款與中小企業本存在著嚴重的資訊不對稱,係因中小企業財務報表普遍失真的情形,而無法取得融資。
長期以來,銀行審查人員對中小企業授信,多是憑經驗累積的主觀判斷。本研究以銀行實際承作之中小企業正常戶及已發生違約的案件做研究分析。
本研究以Logit及Probit模型對中小企業的基本資料及財務報表的各項因子做實證分析,期盼能提高預測其違約之準確率。
實證結果為:
(1)在適度的修正後,Logit及Probit模型總分類預測準確率都已提升到74.78%~75.65%左右。
(2)統計顯著之解釋變數有:公司成立年數、負責人年齡、負責人婚姻狀況、負責人授信額度使用率、負責人近三個月聯徵查詢家數及財務報表是否經會計師簽證等,多以非財務性變數較財務因子還要顯著。
(3)本研究與其他文獻之實證研究相同,以Logit模型較Probit模型佳。
摘要(英) According to 2007 White Paper On Small And Medium Enterprises In Taiwan, small and medium enterprises is 97.77 percent of total enterprises in Taiwan. They played a very important role of economic development in Taiwan’s history. The banks have popularized the loans of small and medium enterprises in recent years. But it has serious asymmetric information between banks and enterprises. The most significant failing of the small and medium enterprises is that the financial statement is always untruthful and causing the difficulty in finance.
For a long time, the loans of small and medium enterprises in banks always depend on the credit censor’s judgment call that accumulated experience in those fields. This research is using the case of Taiwan’s small and medium enterprises both in normal and in default on loans.
This research is an empirical analysis by Logit and Probit models for fundamental data of small and medium enterprises and financial statements factors. We hope that we could improve the percentage of correctly predicting on overdue loans. The empirical results of this analysis are as follows,
(1)The moderate corrections elevated the overall classified correctly predicting probability of both the Logit and Probit models reaches about 74.78% to 75.65%.
(2)We got that the explanatory variables are statistically significant as follows, existent years of enterprise、ages of chairman、marital status of chairman、the chairman’s use ratio of credit、inquiry bank numbers of chairman within 3 months in JCIC and certification of finance by accountant. The non- financial factors are more significant than the financial factors.
(3)This study is the same with the other paper’s empirical results. Logit model is better than Probit model.
關鍵字(中) ★ 預測準確率
★ 聯徵(聯合徵信中心)
★ Logit model
★ Probit model
關鍵字(英) ★ Probit model
★ correctly predicting probability
★ JCIC (Joint Credit Information Center)
★ Logit model
論文目次 第一章 緒論 ........................................ 1
第一節 研究動機.................................... 1
第二節 研究目的 ................................... 5
第三節 研究架構.................................... 6
第二章 研究背景及文獻回顧........................... 8
第一節 政府對中小企業融資輔導...................... 8
第二節 中小企業信保基金............................ 10
第三節 銀行授信原則................................ 12
第四節 文獻回顧.................................... 17
2.4.1 信用風險....................................17
2.4.2 信用評等....................................18
2.4.3 國內外文獻..................................22
第三章 研究對象及方法............................... 26
第一節 研究對象 ................................... 26
第二節 小企業貸款主要變數之定義.................... 27
第三節 資料分析方法 ............................... 31
3.3.1 模型研究....................................33
3.3.2 異質性的檢定................................36
3.3.3 最大概似估計................................37
3.3.4 多重限制假設的檢定..........................38
第四章 實証結果分析. ................................40
第一節 異質性及相關係數的結果...................... 40
第二節 Logit實證結果............................... 42
第三節 Probit實證結果.............................. 51
第五章 結論與建議 .................................. 56
第一節 結論........................................ 56
第二節 建議........................................ 57
第三節 未來研究方向................................ 58
參考文獻 ..............................................60
參考文獻 一、 中文部份
中小企業白皮書經濟部中小企業處,經濟部中小企業白皮書,P84~90,2007年。
中央銀行金融統計月報http://www.cbc.gov.tw/economic/statistics /total_index.asp。
中小企業信用保證基金,中小企業融資信用保證基金作業手冊,該基金本部印製,P1~13,2007年。
台灣中小企業信用保證基金保證績效資料http://www.smeg. org.tw/ index_general.htm。
台灣銀行,「授信風險之評估」,台灣經濟金融月刊,第42卷,第12期,P16,2006年。
行政院金融監督管理委員會銀行局http://www.banking.gov.tw/mp. asp?mp=7。
江惠櫻(2001),「商業銀行對企業授信決策考量因素與授信品質之關係」,靜宜大學企業管理研究所碩士論文。
何永全(2006),「影響中小企業貸款關鍵因素之證實研究」,朝陽科技大學保險金融管理系碩士論文。
吳俊儒(2002),「中小企業信用評等模式之研究」,輔仁大學應用統計學研究所碩士論文。
周添城、林志誠,台灣中小企業的發展機制,初版,民國89年。
金融研訓院銀行授信實務概要編撰委員會,銀行授信實務概要,台灣金融研訓院,2007年。
張大成、劉宛鑫、沈大白,「信用評等模型之簡介」,中國商銀月刊 ,民國91年11月號。
陳思翰(2003),「商業銀行如何利用Logit及KMV模型檢視授信政策」,中央大學財務金融研究所碩士論文。
許振明、林雅玲,「金控公司整併及金融財團的隱憂」, 財政金融組(研) 096-005 號, 2007年2月。
黃新宗(2001),「金融機構對中小企業融資授信風險轉嫁之研究」,逢甲大學保險學系碩士論文。
陳明賢(1985),「財務危機預測之計量分析研究」,國立台灣大學商學研究所碩士論文。
經濟部統計處,「製造業國內投資實況調查報告」,2006年9月。
蘇紋慧(2001),「中小企業信用評估模式之研究—以中小型製造業為例」,國立中山大學財務管理研究所碩士論文。
二、 英文部份
Altman, E.I. (1968), Financial Ratios, Discriminate Analysis and the Prediction of Corporate Bankruptcy, Journal of Finance, 589-609.
Ang, J. S., Lin, J.W. and Tyler, F. (1995), Evidence on the lack of separation between business and personal risks among small business. The Journal of Small Business Finance, 197-210.
Black, F. and M. Scholes, (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81, 3, 637-654.
Bongini, P., L. Laeven and G. Majnoni, (2002), How Good Is the Market at Assessing Bank Fragility? A Horse Race between Different Indicators, Journal of Banking and Finance, 26, 5, 1011-1028.
Boyes, W., D. Hoffman, and S. Low (1989), An Econometric Analysis of the Bank Credit Scoring Problem, Journal of Econometrics, 40, 3-14.
Crosbie, P. J. and J. R. Bohn, (2001), Modeling Default Risk, KMV Corporation.
Crouhy, M., D. Galai and R. Mark, (2000), A Comparative Analysis of Current Credit Risk Models, Journal of Banking and Finance, 24, 1, 59-117.
Dutta, S. and S. Shekhar (1988), Bond Rating: A Non-Conservative Application of Neural Networks, IEEE International Conference on Neural Networks, II443–450.
Ederington, L. H., (1985), Classification Models and Bond Ratings, Financial Review, 20, 237-262.
Foreman, R.D. (2003), A logistic analysis of bankruptcy within the US local telecommunications industry, Journal of Economics and Business, 55(2), 135-166.
Ingram, J. and E.L. Frazier, (1982), Alternative Multivariate Test in Limited Dependent Variable Models: An Empirical Assessment, Journal of Financial and Quantitative Analysis, 227-240.
Kaplan, R. S. and G. Urwitz, (1979), Statistical models of bond ratings: A methodological inquiry. The Journal of Business 52, 231-261.
Merton, R. C., (1974), On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal of Finance, 29, 2, 449-470.
Meyer, Paul A., and Howard W. Pifer (1970), Prediction of Bank Failures, Journal of Finance, September, 853-868.
Ohlson, J. M., (1980), Financial Ratios and the Probabilistic Prediction of Bankruptcy, Journal of Accounting Research, 18, 1, 109-131.
Petersen, M. A. and Rajan, R. (1994), The Benefit of Lending Relationships: Evidence from Small Business Data. Journal of Finance 49, 3-37.
Stiglitz, J. E., and A. Weiss, (1981), Credit Rationing in Markets with Imperfect Information, American Economic Review 71, 393-410.
Surkan, A. and Singleton, J., (1990), Neural networks for bond rating improved by multiple hidden layers, Proceedings of the IEEE International Conference on Neural Networks, II157–162.
Wooldridge, J., (2005), Introductory Econometrics –A Modern Approach, 3rd edition, South-Western Publishing, Mason, 582-595.
Zmijewski, M. E. (1984), Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 24(Supplement), 59-82.
指導教授 陳忠榮、陳禮潭
(Jong-Rong Chen、Lii-Tarn Chen)
審核日期 2008-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明