博碩士論文 955201029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.117.230.50
姓名 蔡宜青(I-CHING TSAI)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以統計分析結果建立鎖相迴路之無邊界式良率優化技術的研究
(A Boundary-less Design Centering Approach Using Statistical Yield Analysis Results for PLL Circuits)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 高速序列傳輸之量測技術
★ 使用低增益寬頻率調整範圍壓控震盪器 之1.25-GHz八相位鎖相迴路★ 類神經網路應用於高階功率模型之研究
★ 使用SystemC語言建立IEEE 802.3 MAC 行為模組之研究★ 以回填法建立鎖相迴路之行為模型的研究
★ 高速傳輸連結網路的分析和模擬★ 一個以取樣方式提供可程式化邏輯陣列功能除錯所需之完全觀察度的方法
★ 抑制同步切換雜訊之高速傳輸器★ 以行為模型建立鎖相迴路之非理想現象的研究
★ 遞迴式類神經網路應用於序向電路之高階功率模型的研究★ 用於命題驗証方式的除錯協助技術之研究
★ Verilog-A語言的涵蓋率量測之研究★ 利用類神經模型來估計電源線的電流波形之研究
★ 5.2GHz CMOS射頻接收器前端電路設計★ 適用於OC-192收發機之頻率合成器和時脈與資料回復電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著積體電路(IC)的研發技術演進,製程尺寸進入了奈米(nanometer)技術時代。當製程技術不斷地推陳出新,製程變異(process variation)對於電路效能的影響也日益嚴重,進而導致生產良率(yield)大幅下降。有鑑於此,針對積體電路的製造可行性設計(Design for Manufacturability, DFM)或良率導向設計(Design for Yield, DFY),成為近年來十分熱門的研究議題。主要的概念,是希望在電路設計初期,把製造過程中可能產生的製程變異現象考慮進來,事先評估對電路效能的影響;若分析之良率不佳,及早在設計初期改良電路。這樣不但能達到提升良率的效果,還能減少重新設計或重新下線(Re-spin)的時間,大幅降低IC設計成本。
設計中心化(design centering),是一種最常被使用在良率優化的技術。主要以初始電路的標稱設計(nominal design),經過良率分析與良率優化的步驟,將標稱設計點逐步移動,使得大多數的模擬樣本點均落在允許之設計區間(acceptable design region)之中,以提升設計良率。然而,在傳統設計中心化的演算法中,需要以大量的設計限制及繁複的數學公式,來定義出可行性參數區間的邊界;對於較複雜的類比電路而言,要定義出合理的可行性參數區間之邊界,實屬不易。
本論文是針對製程變異敏感(sensitive)的類比電路,以最常用的鎖相迴路(PLL)為研究實例,提出一套有效率的良率優化方法,有別於過去的研究,本論文無須定義複雜的可行性參數區間之邊界,而是透過既有的效能模擬結果,再利用統計分析的結果與力學模型的輔助,找出改善良率之設計標稱點位置;然後,將電路依照其階層高低,逐層調整其參數以修正電路設計,達到提升良率的目的。換言之,這種無邊界式的良率優化方法,在不需要描繪可行性參數區間之邊界的前提下,即使是面對複雜的類比電路,也能夠有效率地去修正設計標稱點,達到良率優化的目的。
摘要(英) With the shrinking device size in deep submicron process, the process variation influence on circuit performance is more and more serious, especially for analog circuits. Therefore, design-for-manufacturability (DFM) and design-for-yield (DFY) techniques have become popular research directions in recent years. The main concept of DFM and DFY is to consider the process variation effects in early stage of IC designs. If we can evaluate the impacts of circuit performance under process variations in advance, the circuit yield could be improved at early stages to reduce the re-design cycles and re-spin cost.
Design centering is one of the popular techniques for yield enhancement. Using the nominal design as an initial point, this technique gradually moves the nominal point toward better yield by using the results of circuit performance analysis so that most of simulation samples under process variations will locate in acceptable design regions. However, traditional design centering approaches often require complicated formulas and numerous design constrains to find out the boundaries of acceptable design regions. For complicated analog circuits, such approaches may be difficult to figure out the borders of feasible regions for yield enhancement.
In this thesis, a boundary-less design centering approach is proposed for phase- locked-loop (PLL) circuits, which are very sensitive to process variations. Instead of finding the borders of feasible regions, this work searches the moving tracks of nominal points by reusing the yield analysis results and some mechanics models. After finding the nominal point with better yield, the original design will be adjusted hierarchically to match that nominal point and generate a highly-reliable circuit. Because the proposed yield enhancement approach does not need the complex process to find the boundaries of feasible regions, complicated analog circuits like PLL can also be handled efficiently. As demonstrated in the experimental results, this work indeed improves the design yield of a PLL in a short time even though the PLL circuit is so complicated.
關鍵字(中) ★ 行為模型
★ 蒙地卡羅分析
★ 設計中心化
★ 良率
★ 鎖相迴路
關鍵字(英) ★ design centering
★ yield
★ behavioral model
★ PLL
★ Monte-Carlo Analysis
論文目次 第 1 章 緒 論 1
1.1 研究動機 1
1.2 良率分析方法 3
1.3 良率最佳化與設計中心化 4
1.3.1 設計中心化簡介 4
1.3.2 以公式為基礎的方法 5
1.3.3 以模擬為基礎的方法 6
1.4 問題描述 9
1.5 論文組織 10
第 2 章 以行為模型為基礎的良率提升流程 11
2.1 電路行為模型設計 11
2.2 階層式良率分析方法 17
2.3 階層式提升良率設計流程 21
2.3.1 主要設計流程 23
2.3.2 良率提升流程 24
第 3 章 標稱設計移動法 27
3.1 標稱設計移動法簡介 27
3.2 移動流程 30
3.2.1 通過/未通過樣本分群 31
3.2.2 通過/未通過樣本質心定義 32
3.2.3 力學功能定理應用 36
3.2.4 標稱設計移動求值 38
3.2.5 範例 40
3.3 低通濾波器實驗 43
3.3.1 電路架構與規格描述 43
3.3.2 模擬結果 45
第 4 章 行為階層參數調整與快速良率分析 50
4.1 行為階層參數調整 50
4.1.1 主成分分析 52
4.1.2 反應曲面法 53
4.1.3 雙階層參數調整法 55
4.1.4 快速良率分析 56
4.2 元件階層參數調整 58
4.2.1 電壓控制震盪器(VCO) 59
4.2.2 電荷幫浦(CP)與迴路濾波器(LF) 61
4.2.3 其他數位區塊 63
第 5 章 模擬結果與分析 64
5.1 電路架構與規格描述 64
5.2 實驗環境設定 65
5.3 標稱設計移動結果 66
5.4 階層式參數調整 67
5.5 良率提升導向設計結果 68
第 6 章 結 論 72
參考資料 73
參考文獻 [1] Rong Jiang, Wenyin Fu, J.M Wang, V. Lin, C.C.-P. Chen, “Efficient Statistical Capacitance Variability Modeling with Orthogonal Principle Factor Analysis,” IEEE/ACM International Conference on Computer-Aided Design, pp 683–690, Nov. 2005.
[2] Don Scansen, “Intel’s recipe for FUSI,” Nov. 2006.
[3] Michael Pronath, “Circuit Design for Yield with MunEDA WiCkeD,” MunEDA Technical Forum Taiwan, Apr. 2008.
[4] E. Felt, S. Zanella, C. Guardiani, A. Sangiovanni-Vincentelli, “Hierarchical Statistical Characterization of Mixed-signal Circuits Using Behavioral Modeling,” IEEE/ACM International Conference on Computer-Aided Design, pp. 374-380, Nov. 1996.
[5] J.F. Swidzinski, D. Alexander, M. Qu, M.A. Styblinski, “A Systematic Approach to Statistical Simulation of Complex Analog Integrated Circuits,” International Workshop on Statistical Metrology, pp. 86-89, Jun. 1997.
[6] J.F. Swidzinski, M.A. Styblinski, G. Xu, “Statistical Behavioral Modeling of Integrated Circuits,” IEEE International Symposium on Circuits and Systems, pp. 98 - 101, May 1998.
[7] T. Fujita, K. Okada, H. Fujita, H. Onodera, K. Tamaru, “A Method For Linking Process-level Variability to System Performances,” IEEE/ACM Design Automation Conference, pp. 547-551, Jan. 2000.
[8] Xin Li, Jiayong Le, L.T. Pileggi, A. Strojwas, “Projection-based Performance Modeling for Inter/Intra-die Variations,” IEEE/ACM International Conference on Computer-Aided Design, pp. 721-727, Nov. 2005.
[9] Guo Yu, Peng Li, “Lookup Table Based Simulation and Statistical Modeling of Sigma-delta ADCs,” IEEE/ACM Design Automation Conference, pp. 1035-1040, Jul. 2006.
[10] 李孟蓉, “建立精準的鎖相迴路行為模型來快速分析製程漂移之影響,” 國立中央大學電機工程研究所碩士論文, Jul. 2006.
[11] H.E. Graeb, “Analog Design Centering and Sizing,” Springer, 2007.
[12] Xin Li, Jian Wang, Lawrence T. Pileggi, Tun-Shih Chen and Wanju Chiang, “Performance-Centering Optimization for System-Level Analog Design Exploration,” IEEE/ACM International Conference on Computer-Aided Design, pp 422 - 429, Nov. 2005.
[13] M. Hershenson, “Efficient description of the design space of analog circuits,” IEEE/ACM Design Automation Conference, pp. 970-973, 2003.
[14] S.S. Sapatnekar, P.M. Vaidya, S.M. Kang, ”Convexity-based Algorithms for Design Centering,” IEEE/ACM International Conference on Computer-Aided Design, pp. 206-209, 1993.
[15] Guido Stehr, Michael Pronath, Frank Schenkel, Helmut Graeb, Kurt Antreich, “Initial Sizing of Analog Integrated Circuits by Centering Within Topology-given Implicit Specifications,” IEEE/ACM International Conference on Computer-Aided Design, pp.241-246, 2003.
[16] B. Smedt and G. Gielen, “WATSON: design space boundary exploration and model generation for analog and RF IC design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 2, pp. 213-224, Feb. 2003.
[17] G. Stehr, H. Graeb and K. Antreich, “Performance trade-off analysis of analog circuits by normal-boundary intersection,” IEEE/ACM Design Automation Conference, pp. 958-963, 2003.
[18] G. Stehr, H. Graeb and K. Antreich, “Analog performance space exploration by Fourier-Motzkin elimination with application to hierarchical sizing,” IEEE/ACM International Conference on Computer-Aided Design, pp.847-854, 2004.
[19] Xiao Xiang Ming, Robert Spence, “Speeding Design Centering by Reusing Simulated Data,” The IEEE International Symposium on Circuits and Systems, pp. 1790-1792, May. 1993.
[20] K. Antreich, J. Eckmueller, H. Graeb, M. Pronath, F. Schenkel, R. Schwencker, and S. Zizala. WiCkeD, “Analog circuit synthesis incorporating mismatch,” IEEE Custom Integrated Circuits Conference, pp. 511-514, 2000.
[21] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H. Graeb and K. Antreich, “Mismatch analysis and direct yield optimization by spec-wise linearization and feasibilityguided search,” IEEE/ACM Design Automation Conference, pp. 858-863, 2001.
[22] K.J. Antreich, H.E. Graeb, C.U. Wieser, “Circuit analysis and optimization driven by worst-case distances,” IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems, pp.57-71, Jan. 1994.
[23] Udo Sobe, Karl-Heinz Rooch, Andreas Ripp, Michael Pronath, “Robust Analog Design for Automotive Applications by Design Centering with Safe Operating Areas,” International Symposium on Quality Electronic Design, pp. 848-854, Mar. 2008.
[24] 王裕謙, “以行為模型建立鎖相迴路之非理想現象的研究,” 國立中央大學電機工程研究所碩士論文, Jun. 2004.
[25] 郭晉誠, “建立考慮電源雜訊之鎖相迴路行為模型,” 國立中央大學電機工程研究所碩士論文, Jun. 2005.
[26] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley and J. Hellums, “Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 6, pp. 703-717, Jun. 2000.
[27] G. Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche, G. Gielen, W. Sansen, P. Veselinovic and D. Leenaerts, “AMGIE ― a synthesis environment for CMOS analog integrated circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 9, pp. 1037-1058, Sep. 2001.
[28] X. Li, P. Gopalakrishnan, Y. Xu and L. Pileggi, “Robust analog/RF circuit design with projection-based posynomial modeling,” IEEE/ACM International Conference on Computer-Aided Design, pp. 855-862, 2004.
[29] http://www.neolinear.com
[30] 陳順宇, “多變量分析,” 華泰文化, 2005年四版.
[31] 蔣安國,蔣安仁,丁敬哲,鐘建平, “Construction the Reliability of Project Scheduling Using Simulation and Statistical Methods,” 第一屆管理與決策2005年學術研討會特刊 pp. 119-130, 2005.
[32] B.Razavi, ”Design of Analog CMOS Integrated Circuits,” McGraw-Hill Iternational on al edotion, 2001.
[33] Jun Zou, Daniel Mueller, Helmut Graeb, Ulf Schlichtmann “A CPPLL Hierarchical Optimization Methodology Considering Jitter, Power and Locking Time,” IEEE/ACM Design Automation Conference, pp. 19-24, 2006.
指導教授 劉建男(Chien-Nan Jimmy Liu) 審核日期 2008-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明