博碩士論文 955201037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.235.108.188
姓名 林清偉(Ching-Wei Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 有機非揮發性記憶體之量測與分析
(Measurement and Analysis on Organic Oon-volatile Memory)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 量子點的電子能階★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 應用於數位電視頻帶之平衡不平衡轉換器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於有機複合材料具有低製造成本、高應力柔軟度和多功能用途等獨特的優勢,以及在太陽能電池、有機電晶體和發光二極體等應用上的潛力,引發廣泛的研究興趣,許多先進元件不斷被提出。在這篇論文中,我們研究一個利用有機聚合物鏈結金奈米粒子形成主動層的新穎有機非揮發性記憶體的載子傳輸機制以及記憶體本身的特性,並且提出利用橢圓儀建構出非破壞性的量測方式來精準且有效的量測有機薄膜本身的折射係數、消光係數和厚度。
  我們可由兩層金屬中間夾著一個有機薄膜(PCm)鏈結金奈米粒子所形成主動層的記憶體元件中觀察到重覆可再現的電性雙穩態行為。從穿隧式電子顯微鏡中(TEM),可以明顯的觀察到在有機層中的金奈米粒子分布尺寸約在3-5奈米大小,性質相當穩定。當對此元件施加一個高於臨界電壓的偏壓,元件的電流值會突然從低傳導率轉態成高傳導率,這兩個電流值的差異可達到約四個數量級。電荷在此元件中的主要電流傳導機制是Frankel-Poole穿隧,代表著載子在有機層中是藉由缺陷所形成的跳躍穿隧,而非直接穿隧。
  對該元件進行耐久性以及資料保存能力測試,結果顯示元件在進行多次讀寫週期並不會有明顯的特性衰減,且元件對於資料的保存能力可以超過十年,這是相當良好的記憶體特性。綜合上述,如此一個新穎的有機聚合物鏈結金奈米粒子之有機非揮發性記憶體有很大的發展潛力可以應用於下一世代的發揮發性記憶體。
摘要(英) During the past decade, organic compounds have attracted intensively interest because of their unique advantages including low cost, high mechanical flexibility and potential applications in solar cell, organic field-effect transistors and light-emitting diodes. Many kinds of advanced memory devices were proposed. In this thesis, we investigated the carrier transport properties of a novel organic non-volatile memory device with an active layer consisting of polymer -chain-stabilized gold nanoparticles (PCm-Au NPs). A non-destructive method based on wavelength-dependent ellipsometry was proposed to characterize the PCm’s refractive index, extinction coefficient, and thickness rapidly and precisely.
We observed reproducible electrical bistability behavior in such a device consisted of a PCm-Au NPs film sandwiched between two Al electrodes. Transmission electron microscopy (TEM) observation shows that Au-NPs size is 3-5 nm and dispersed inside the organic layer. As the gate voltage exceeds the threshold voltage of 2.5V, the memory exhibited an abrupt current transition from low to high state. These two states differed in conductivity by about four orders of magnitude. The charge conduction mechanism in this system is found to be Frankel-Poole tunneling, indicating that electronic charges transport through the organic PCm layer is via trap-assisted hopping.
For practical application, the data retention and endurance properties of an Al/PCm-Au NPs/Al memory were tested under various ambient conditions. The device could be written-erased numerous times without prominent current degradation with excellent data retention ability (more than 10 years). The novel polymer stabilized Au nanoparticles bistable memory device is considered to be promising candidates for next generation nonvolatile memory applications.
關鍵字(中) ★ 有機非揮發性記憶體 關鍵字(英) ★ organic non-volatile memory
論文目次 中文摘要 ………………………………………………………… i
英文摘要 ………………………………………………………… ii
致謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
圖目錄 ………………………………………………………… vi
第一章 緒論
1-1、研究動機 ………………………………………………… 1
1-2、目前瓶頸 ………………………………………………… 2
1-3、有機非揮發性記憶體 …………………………………… 3
1-4、有機非揮發性記憶體發展 ……………………………… 5
1-5、研究目標 ………………………………………………… 6
第二章 操作原理
2-1、前言 ……………………………………………………… 8
2-2、非揮發性記憶體操作 …………………………………… 8
2-3、載子穿隧機制 …………………………………………… 10
第三章 元件結構與開發
3-1、前言 ……………………………………………………… 16
3-2、元件結構與製作 ………………………………………… 17
3-3、有機介電薄膜特性 ……………………………………… 18
3-4、非破壞性橢圓儀量測 …………………………………… 19
第四章 元件電性量測與分析
4-1、前言 …………………………………………………… 38
4-2、有機介電層薄膜電性探討 …………………………… 39
4-3、摻金奈粒子之有機薄膜 ……………………………… 40
4-4、電容特性量測 ………………………………………… 46
4-5、記憶體特性量測 ……………………………………… 49
4-6、結論 …………………………………………………… 54
第五章 總結與展望 ………………………………………… 69
參考文獻資料 …………………………………………… 70
參考文獻 [1] Sandip Tiwari, Farhan Rana, Hussein Hanafi, Allan Hartstein, Emmanuel F. Crabbe´, Kevin Chan, “A silicon nanocrystals based memory.” Appl. Phys. Lett. 68, pp1377, (1996).
[2] J.H.Wu and P.W.Li, “Ge nanocrystals metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12,” Semiconductor Science and Technology, vol. 22, p. S89-S92, (2007).
[3] Hostetler, M. J. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).
[4] Burroughes, J. H. et al. “Light-emitting diodes based on conjugated polymers. ” Nature. 347, 539–541, (1990).
[5] Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. “ Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. ” Sciene. 258, 1474–1476, (1992).
[6] Dimitrakopoulos, C. D. & Mascaro, D. J. “ Organic thin-film transistors: A eview of recent advances. ” IBM J. Res. Dev. 45, 11–27, (2001).
[7] Ma, L. P., Liu, J. & Yang, Y. “ Organic electrical bistable devices and rewritable memory cells. ” Appl. Phys. Lett. 80, 2997–2999, (2002).
[8] Jianyong Ouyang, Chih-Wei Chu, Charles R. Szmanda, Liping Ma and Ynag Yang*, “ Programmable polymer thin film and non-volatile memory device. ” Nature Materials. 3, 918-922, (2004).
[9] Alokik Kanwal, Shashi Paul and Manish Chhowalla, “ Organic Memory Devices Using C60 and Insulating Polymer. ” Materials Research Society 830, D7.2.1-5, (2005).
[10] Dong-Ick Son, Ji-Hwan Kim, Dong-Hee Park,Won Kook Choi, Fushan Li, Jung Hun Ham and Tae Whan Kim, “Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a
conducting poly N-vinylcarbazole polymer layer. ” Nanotechnology 19, 055204, (2008).
[11] Heng-Tien Lin, Zingway Pei, and Yi-Jen Chan, “Carrier Transport Mechanism in a Nanoparticle-Incorporated Organic Bistable Memory
Device.” IEEE ELECTRON DEVICE LETTERS, 28, 569-571, (2007).
[12] Jae Hun Jung, Joo Hyung You, Tae Whan Kim*, “ The effects of the writing voltage on the electrical bistability properties of organic memory devices consisting of a single layer.” Solid State Communications, 146, 17-20, (2008).
[13] A. Schenk and G. Heiser, “ Modeling and Simulation of Tunneling through Ultra-thin Gate Dielectrics.” J. Appl. Phys. 81, p.7900, (1997)
[14] R. H. Flower, L. Nordheim, Proc. R. Soc. London, Ser. p.173, (1928)
[15] J. G. Simmons, “Generalized formula for the electric tunneling effect between silicon electrodes separated by a thin insulating film.” J. Appl. Phys, 34, No.6, (1963)
[16] A. Rose, “Space-Charge-Limited Currents in Solids.” Phys. Rev. 97, (1955)
[17] Heng-Tien Lin, Zingway Pei, Jun-Rong Chen, Gue-Wuu Hwang, Jui-Fen Fan, and Yi-Jen Chan, “A New Nonvolatile Bistable Polymer-Nanoparticle Memory Device.” IEEE ELECTRON DEVICE LETTERS, 28, 951-953, (2007).
[18] 許清舜,「有機薄膜的厚度及氟化鋰添加對非揮發性有機雙態記憶體之影響」,國立東華大學材料科學與工程研究所碩士論文,93年7月。
[19] Heng-Tien Lin, Zingway Pei, Jun-Rong Chen, Chen-Pang Kung, Yu-ChengLin, Chi-Ming Tseng and Yi-Jen Chan, “A 16-Byte Nonvolatile Bistabile Polymer Memory Array on Plastic Substrates.” IEEE Electron devices meeting, 233-236, (2007).
[20] S. M. Sze, Semiconductor devices physics and technology (2nd), Wiley.
指導教授 郭明庭、李佩雯
(David M. T. Kuo、Pei-Wen Li)
審核日期 2008-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明