博碩士論文 955201044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.170.81.210
姓名 羅勝名(Sheng-ming Luo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
(Microwave/Millimeter-wave Amplifier using GaAs HEMT device)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製
★ 氧化鋁基板上微波功率放大器之研製★ 氧化鋁基板上積體化微波降頻器電路之研製
★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益
★ LDMOS功率電晶體元件設計、特性分析及其模型之建立★ CMOS無線通訊接收端模組之設計與實現
★ 積體化微波被動元件之研製與2.4GHz射頻電路設計★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立
★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製
★ 二維至三維微波被動元件與射頻電路之設計與研製★ CMOS射頻無線通訊發射端電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來無線通訊的迅速發展,微波與毫米波元件議題日漸重要。本論文主要討論0.15 um MHEMT製程與0.15 um PHEMT製程在射頻電路低雜訊放大器上應用,並利用0.5 um PHEMT製程設計加入電感提升的分佈式放大器,希望可以解決高頻率的小訊號增益,改善通訊系統中各級輸出的訊號的強度。
第一章為整篇論文的緒論,第二章分析0.15 um MHEMT製程的小訊號特性,使用HP IC-CAP軟體,搭配HP-8510C網路分析儀與HP-4142B直流分析儀量測元件的高頻特性,並將萃取出來的小訊號模型,於第三章分別設計成K頻段與Q頻段的低雜訊放大器,再與第四章利用0.15 um PHEMT製程所設計的K頻段低雜訊放大器做比較,同時也設計K頻段功率放大器,希望可以和低雜訊放大器一起整合在汽車雷達通訊系統中,第五章則是利用0.5 um PHEMT製程以電感提升的方式設計疊接分佈式寬頻放大器,希望電感提升的設計方式可以達到相當寬的頻寬,再使用90 nm CMOS 製程,希望實現有80 GHz的頻寬。
摘要(英) 近年來無線通訊的迅速發展,微波與毫米波元件議題日漸重要。本論文主要討論0.15 um MHEMT製程與0.15 um PHEMT製程在射頻電路低雜訊放大器上應用,並利用0.5 um PHEMT製程設計加入電感提升的分佈式放大器,希望可以解決高頻率的小訊號增益,改善通訊系統中各級輸出的訊號的強度。
第一章為整篇論文的緒論,第二章分析0.15 um MHEMT製程的小訊號特性,使用HP IC-CAP軟體,搭配HP-8510C網路分析儀與HP-4142B直流分析儀量測元件的高頻特性,並將萃取出來的小訊號模型,於第三章分別設計成K頻段與Q頻段的低雜訊放大器,再與第四章利用0.15 um PHEMT製程所設計的K頻段低雜訊放大器做比較,同時也設計K頻段功率放大器,希望可以和低雜訊放大器一起整合在汽車雷達通訊系統中,第五章則是利用0.5 um PHEMT製程以電感提升的方式設計疊接分佈式寬頻放大器,希望電感提升的設計方式可以達到相當寬的頻寬,再使用90 nm CMOS 製程,希望實現有80 GHz的頻寬。
關鍵字(中) ★ 低雜訊放大器
★ 電感提升
★ 分佈式放大器
關鍵字(英) ★ distributed amplifier
★ low noise amplifie
★ inductive peaking
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1研究背景與動機 1
1.2 相關研究發展 3
1.3 論文架構 3
第二章 變異性(METAMORPHIC)高電子遷移率電晶體之小訊號模型建立 5
2.1 簡介 5
2.2 小訊號模型與建立流程 5
2.3 變異性高電子電晶體小訊號模型與雜訊模型建立 7
2.3.1外部寄生元件參數萃取流程與結果 7
2.3.2內部寄生元件參數萃取流程與結果 13
2.3.3雜訊指數模型與萃取結果 19
2.4 結果與討論 21
第三章 利用變異性(METAMOPHIC)高速電子遷移率電晶體設計K頻段、Q頻段低雜訊放大器設計 23
3.1 簡介 23
3.2 K頻段、Q頻段之低雜訊放大器設計概念 24
3.3 K頻段、Q頻段之低雜訊電路設計 24
3.3.1 元件選擇 24
3.3.2 設計方法 26
3.4 K頻段、Q頻段之低雜訊電路模擬與量測結果 27
3.5 結果與討論 33
第四章 利用假晶格(PSUEDOMOPHIC)高電子遷移率電晶體設計K頻段低雜訊放大器與功率放大器 35
4.1 簡介 35
4.2 K頻段之低雜訊放大器與功率放大器設計概念 35
4.3 K頻段之低雜訊放大器與功率放大器電路設計 35
4.3.1 K頻段之低雜訊放大器電路設計 35
4.3.2 K頻段之功率放大器電路設計 38
4.4 K頻段之低雜訊放大器與功率放大器電路模擬與量測結果 40
4.4.1 K頻段之低雜訊放大器模擬與量測結果 40
4.4.2 K頻段之功率放大器模擬與量測結果 43
4.5結果與討論 47
4.5.1 K頻段之低雜訊放大器之結果與討論 47
4.5.2 K頻段之功率放大器之結果與討論 48
第五章 疊接分佈式寬頻放大器設計 51
5.1簡介 51
5.2疊接分佈式寬頻放大器設計概念 52
5.3疊接分佈式寬頻放大器設計流程 55
5.4疊接分佈式寬頻放大器模擬結果與佈局 59
5.4.1 兩級疊接分佈式寬頻放大器模擬結果與佈局圖 59
5.4.2 六級疊接分佈式寬頻放大器模擬結果與佈局圖 61
5.4.3 CMOS疊接分佈式放大器模擬與佈局圖 63
5.5疊接分佈式寬頻放大器量測結果 65
5.5.1兩級疊接分佈式寬頻放大器量測結果 65
5.5.2六級疊接分佈式寬頻放大器量測結果 69
5.6結論 73
第六章 結論 75
參考文獻 77
參考文獻 [1] C. S. Whelan, P. F. Marsh, W. E. Hoke, R. A. McTaggart, P. S. Lyman, P. J. Lemonias, S. M. Lardizabal, R.E., III. Leoni, S. J. Lichwala and T. E. Kazior, “Millimeter-wave low-noise and high-power metamorphic HEMT amplifiers and devices on GaAs substrates,” Solid-State Circuits, IEEE Journal of, vol.35, no.9, pp.1307-1311, Sep 2000
[2] S. Fujimoto, T. Katoh, T. Ishida, T. Oku, Y. Sasaki, T. Ishikawa and Y. Mitsui, “Ka-Band ultra low noise MMIC amplifier using pseudomorphic HEMTs ,” Radio Frequency Integrated Circuits (RFIC) Symposium, IEEE, pp.169-173, 8-11 Jun 1997
[3] Hua-Shan Chou, Chieh-Chao Liu and T. H. Chen, “Ka-band monolithic GaAs PHEMT low noise and driver amplifiers,” Microwave Conference, 2001. APMC, Asia-Pacific, vol.1, pp.139-142, 2001
[4] M. T. Reiha and J. R. Long, “A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 μm CMOS,” Solid-State Circuits, IEEE Journal of, vol.42, no.5, pp.1023-1033, May 2007
[5] Kuo-Liang Deng, Huei Wang, C. Glaser and M.G. Stubbs, “A miniature high gain and broadband MMIC distributed amplifier,” Microwave Conference, 2003. 33rd European, vol.2, pp. 615-618 vol.2, 7-9 Oct. 2003
[6] J. Aguirre and C. Plett, “50-GHz SiGe HBT distributed amplifiers employing constant-k and m-derived filter sections,” Microwave Theory and Techniques, IEEE Transactions on, vol.52, no.5, pp. 1573-1579, May 2004
[7] Ming-Da Tsai, Kuo-Liang Deng, Huei Wang, Chun-Hung Chen, Chih-Sheng Chang and J. G. J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” Microwave and Wireless Components Letters, IEEE, vol.14, no.12, pp. 554-556, Dec. 2004
[8] Kuo-Liang Deng, Tian-Wei Huang and Huei Wang, “Design and analysis of novel high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages,” Microwave Theory and Techniques, IEEE Transactions on, vol.51, no.11, pp. 2188-2196, Nov. 2003
[9] A. Lamesa, G. Giolo and E. Limiti, “Design procedure and performance of two 0.5-20 GHz GaAs PHEMT MMIC matrix distributed amplifier for EW applications,” Microwave Conference, 2004. 34th European, vol.1, pp. 9-12, 11-15 Oct. 2004
[10] Jun-Chau Chien and Liang-Hung Lu, “40Gb/s High-Gain Distributed Amplifiers with Cascaded Gain Stages in 0.18 m CMOS,” Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp.538-620, 11-15 Feb. 2007
[11] K. W. Kobayashi, ”High Linearity Dynamic Feedback Darlington Amplifier,” Compound Semiconductor Integrated Circuit Symposium, 2007. CSIC 2007. IEEE,pp.1-4, 14-17 Oct. 2007
[12] Jun-De Jin and S.S.H. Hsu, “A 1-V 45-GHz Balanced Amplifier With 21.5-dB Gain Using 0.18-m CMOS Technology,” Microwave Theory and Techniques, IEEE Transactions on, vol.56, no.3, pp.599-603, March 2008
[13] S. Deibele and J. B. Beyer, “Attenuation compensation in distributed amplifier design,” Microwave Theory and Techniques, IEEE Transactions on, vol.37, no.9, pp.1425-1433, Sep 1989
[14] J. J. Morikuni and S. M. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” Circuits and Systems, 1992. ISCAS '92. Proceedings., 1992 IEEE International Symposium on, vol.6, no., pp.2848-2851 vol.6, 10-13 May 1992
[15] J. J. Morikuni and S.-M. Kang, “An analysis of inductive peaking in photoreceiver design,” Lightwave Technology, Journal of , vol.10, no.10, pp.1426-1437, Oct 1992
[16] N. Ohkawa, “Fiber-optic multigigabit GaAs MIC front-end circuit with inductor peaking,” Lightwave Technology, Journal of, vol.6, no.11, pp.1665-1671, Nov 1988
[17] http://tech.digitimes.com.tw/ShowNews.aspx?zCatId=416&zNotesDocId=000007227
9_B8B1ZT3DN56YG6HLJA70A, ”雷達技術增添汽車「視覺」生命力” 羅清岳卅DIGITIMES
[18] http://www.eetimes.com/showArticle.jhtml?articleID=205920431, “Firms devise CMOS-based auto radar chip”
[19] L. Yang and S. I. Long, “New method to measure the source and drain resistance of the GaAs MESFET,” Electron Device Letters, IEEE, vol.7, no.2, pp. 75-77, Feb 1986
[20] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” Microwave Theory and Techniques, IEEE Transactions on, vol.36, no.7, pp.1151-1159, Jul 1988
[21] 微波通訊半導體電路 編譯: 呂學士, 出版者:全華科技圖書股份有限公司
[22] M.Virtue, et al., ”TRL Calibration Sharpens MM-Wave Wafer Measurements”, Microwaves and RF, Vol 7 No.10, October 1988, pp. 77-84.
[23] Steve C. Cripps “RF Power Amplifier for Wireless Communications.”
[24] Youngwoo Kwon, D. S. Deakin, E. A. Sovero and J. A. Higgins, “High-performance Ka-band monolithic low-noise amplifiers using 0.2-m dry-recessed GaAs PHEMTs,” Microwave and Guided Wave Letters, IEEE, vol.6, no.7, pp.253-255, Jul 1996
[25] T. Tokumitsu, B. Piernas, A. Oya, K. Sakai and Y. Hasegawa, “K-band 3-D MMIC low noise amplifier and mixer using TFMS lines with ground slit,” Microwave and Wireless Components Letters, IEEE, vol.15, no.5, pp. 318-320, May 2005
[26] B. Matinpour, N. Lal, J. Laskar, R. E. Leoni and C. S. Whelan, “K-band receiver front-ends in a GaAs metamorphic HEMT process,” Microwave Theory and Techniques, IEEE Transactions on, vol.49, no.12, pp.2459-2463, Dec 2001
[27] Y. Mimino, M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki and S. Kuroda, “High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2000. Digest of Papers. 2000 IEEE , pp.209-212
[28] Kyung-Wan Yu, Yin-Lung Lu, Da-Chiang Chang, V. Liang and M. F. Chang, “K-band low-noise amplifiers using 0.18 m CMOS technology,” Microwave and Wireless Components Letters, IEEE , vol.14, no.3, pp. 106-108, March 2004
[29] C. Pavageau, M. Si Moussa, J.-P. Raskin, D. Vanhoenaker-Janvier, N. Fel, J. Russat, L. Picheta and F. Danneville, “A 7-dB 43-GHz CMOS Distributed Amplifier on High-Resistivity SOI Substrates,” Microwave Theory and Techniques, IEEE Transactions on , vol.56, no.3, pp.587-598, March 2008
[30] K. Moez and M. Elmasry, “A 10dB 44GHz Loss-Compensated CMOS Distributed Amplifier,” Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp.548-621, 11-15 Feb. 2007
[31] Ren-Chieh Liu, To-Po Wang, Liang-Hung Lu, Huei Wang, Sung-Hsiung Wang and Chih-Ping Chao, “An 80GHz travelling-wave amplifier in a 90nm CMOS technology,” Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, pp.154-590 Vol. 1, 10-10 Feb. 2005
[32] Ren-Chieh Liu, Chin-Shen Lin, Kuo-Liang Deng and Huei Wang, “A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier,” VLSI Circuits, 2003. Digest of Technical Papers. 2003 Symposium on, pp. 139-140, 12-14 June 2003
[33] S. Kimura, Y. Imai, S. Yamaguchi and K. Onodera, “0-56 GHz GaAs MESFET gate-line-division distributed baseband amplifier IC with 3D transmission lines,” Electronics Letters, vol.33, no.1, pp.93-95, 2 Jan 1997
[34] S. Kimura, Y. Imai, Y. Umeda and T. Enoki, “A 16-dB DC-to-50-GHz InAlAs/InGaAs HEMT distributed baseband amplifier using a new loss compensation technique,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1994. Technical Digest 1994., 16th Annual , pp. 96-99, 16-19 Oct. 1994
[35] H. Shigematsu, M. Sato, T. Suzuki, T. Takahashi, K. Imanishi, N. Hara, H. Ohnishi and Y. Watanabe, “A 49-GHz preamplifier with a transimpedance gain of 52 dBΩ using InP HEMTs,” Solid-State Circuits, IEEE Journal of, vol.36, no.9, pp.1309-1313, Sep 2001
[36] Ming-Da Tsai, Huei Wang, Jui-Feng Kuan and Chih-Sheng Chang, “A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology,” Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, pp.402-606 Vol. 1, 10-10 Feb. 2005
指導教授 詹益仁、張鴻埜
(Yi-Jen Chan、Hong-Yeh Chang)
審核日期 2008-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明