博碩士論文 955201066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.21.106.240
姓名 鄭皓仁(Hao-jen Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 兩段整合光注入式1.55μm高速半導體雷射
(High-Speed Two Sectional Integrated Optical Injection Semiconductor Lasers at 1.55μm Wavelength)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在光纖通訊中,雷射的調制頻寬關係著資料量傳輸的速度,而光注入式鎖態雷射結構,擁有增加共振頻率的特性,然而其結構需要一支外部雷射注入,在實際應用上是非常麻煩的,因此我們提出兩段整合光注入式以InAlGaAs多重量子井的Fabry-Perot半導體雷射,此結構整合光注入式鎖態雷射結構,因此不需要額外的外部雷射注入,可以單一晶片封裝,且不需要光阻絕器或光循環器,也無對光的問題存在,此元件的共振頻率最高可以達到41GHz,在頻率響應上相對於無外部雷射注入時,直接調變的頻寬可以有兩倍的增加,達到20GHz的頻寬。
摘要(英) As the application of optical communication system, the modulation bandwidth of laser has great effect on data transmission speed. With the view of that, the laser with optical injection-locked structure is proposed to enhance speed performance by use of adding resonance frequencies in semiconductor lasers. However, this structure needs an external injection from other laser cavity, resulting in huge cost, and inconvenience.
In spite of it, in this thesis, we demonstrate a novel InAlGaAs-MQW Fabry-Perot laser with the structure of monolithic optical injection. It can enjoy the advantage such as single chip package, needless of optical isolator or circulator, automatic optical alignment, and environmentally robust. The device can achieve high resonance frequency at 41GHz, and comparing with non optical injecting, directly modulation bandwidth has twice improvement to 20GHz.
關鍵字(中) ★ 光注入式
★ 高速
★ 半導體雷射
關鍵字(英) ★ semiconductor laser
★ optical injection
★ high speed
論文目次 Abstract I
摘要 II
致謝 III
目錄 V
圖目錄 VII
表目錄 XI
第一章 序論 1
§ 1.1光纖通訊發展及應用 1
§ 1.2 光注入鎖式雷射簡介 4
§ 1.3 論文動機與架構 8
第二章 原理 9
§ 2.1半導體雷射基本原理 9
§ 2.2 半導體雷射頻寬限制之因素 13
§ 2.3光注入式鎖態雷射理論 17
§ 2.4兩段整合光注入式Fabry-Perot半導體雷射設計原理與模擬 18
第三章 元件製作概說與詳細製程步驟 23
§ 3.1流程元件製作概說 23
§ 3.2 晶片研磨與劈裂 25
§ 3.3 詳細製程步驟 26
§ 3.4 兩段整合光注入式Fabry-Perot半導體雷射製作流程 29
§ 3.5 蝕刻剖面圖之結果與討論 37
第四章 量測系統與量測結果分析 49
§ 4.1量測系統 49
§ 4.2量測結果 51
第五章 結論與未來研究方向 65
§ 5.1 總結 65
§ 5.2 未來之研究方向 65
參考資料 67
參考文獻 [1] A. Sano, H. Masuda, Y. Kisaka, S. Aisawa, E. Yoshida, Y. Miyamoto, M. Koga, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, “14-Tb/s (140 x 111-Gb/s PDM/WDM) CSRZ-DQPSK Transmission over 160 km Using 7-THz Bandwidth Extended L-band EDFAs,” European Conference on Optical Communication 2006(ECOC 2006) Post deadline , Th4.1.1.
[2] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett., vol. 9, pp. 25-27, 1997.
[3] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo “40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3 μm InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers” IEEE Photon. Technol. Lett. , vol. 19, no. 19, pp. 1436, Oct. 1, 2007.
[4] C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-21, pp. 1152-6, 1985.
[5] A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection” IEEE J. Quantum Electron., vol. 39, pp. 1196-204, 2003.
[6] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 709-11, 1995.
[7] K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE Trans. Micro. Theory Tech., vol. 30, pp. 1657-1662, 1982.
[8] X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett., vol. 34, pp. 2040-1, 1998.
[9] L. Chrostowski, C. H. Chang, and C. Chang-Hasnain, “Reduction of relative intensity noise and improvement of spur-free dynamic range of an injection locked VCSEL,” IEEE LEOS. vol.2, pp.706-7, 2003.
[10] N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron., vol. QE-22, pp. 642-50, 1986.
[11] M. C. Espana-Boquera and A. Puerta-Notario, “Noise effects in injection locked laser simulation: phase jumps and associated spectral components,” Electron. Lett., vol. 32, pp. 818-19, 1996.
[12] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 9, pp. 1325-7, 1997.
[13] G. Yabre, H. De Waardt, H. P. A. van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron., vol. 36, pp. 385-93, 2000.
[14] H. Toba, Y. Kobayashi, K. Yanagimoto, H. Nagai, and M. Nakahara, “Injection locking technique applied to a 170 km transmission experiment at 445.8 Mbit/s,” Electron. Lett., vol. 20, pp. 370-1, 1984.
[15] N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, and J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightw. Technol., vol. LT-3, pp. 63-7, 1985.
[16] H.-K. Sung, T. Jung, M. C. Wu, D. Tishinin, K. Y. Liou, and W. T. Tsang,” Optical Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers with Enhanced RF Performance,” in Proc. Int. Topical Meeting Microwave Photon. (MWP’04), 2004, pp. 225-8.
[17] X. Jin and S. L. Chuang, “Microwave modulation of a quantum-well laser with and without external optical injection” IEEE Photon. Technol. Lett., vol. 13, pp. 648, Jul., 2001.
[18] X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection” Electron. Lett., vol. 34, no.21, pp. 2031-2, Oct. 1998.
[19] E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Optics Express, vol. 16, no. 9, pp 6609, 2008.
[20] H.-K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K.Y. Liou, and W.T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB laser” in Proc. Int. Topical Meeting Microwave Photon. (MWP’03), pp 27, Sep. 10-12, 2003.
[20] L. A. Coldren, S. W. Corzine, ” Diode Lasers and Photonic Integrated Circuits,” Chapter 2, Wiley, New York, 1995.
[21] T. Hiroaki, T. Ken, S. Kenji, Y. Mitsuo, I. Yoshio, S. Akihide, Y. Mikio, O. Taiichi, “NRZ operation at 40 Gb/s of a compact module containing an MQW electroabsorption modulator integrated with a DFB laser,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 572-574, May 1997.
[22]M. N. Sysak, J. W. Raring, G. P. Morrison, D. J. Blumenthal, L. A. Coldren, “Monolithically integrated, sampled grating DBR laser transmitter with an asymmetric quantum well electroabsorption modulator,” IEEE 20th International Semiconductor Laser Conference, ISLC, pp. 29-30, 2006.
[23] E. K. Lau, H.-K. Sung, and M. C. Wu, ”Scaling of resonance frequency for strong injection-locked lasers,” Optics Letters vol. 32, no. 23, pp. 3373-3375, Dec. 1, 2007.
[24] M. Quillec, “Material for future InP Based Optoelectronics: InGaAsP Versus InGaA1As,” SPIE vol. 1361 Physical Concepts of Materials for Novel Optoelectronic Device Applications, pp. 34-46, 1990.
[25] L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz Bandwidth and 64 GHz Resonance Frequency in Injection-Locked 1.55μm VCSELs,” IEEE J. S. Topics In Quantum Electron., vol. 13, no. 5, Sep./Oct. 2007.
[26]Harry J. R. Dutton “Understanding Optical Communications” IBM International Technical Support Organization, http://www.redbooks.ibm.com September, 1998.
指導教授 許晉瑋(J.-W. Shi) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明