博碩士論文 955201100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:13.58.82.79
姓名 翁守賢(Shou-Hsien Weng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用達靈頓對之單晶微波及毫米波寬頻電路
(Monolithic Microwave and Millimeter-wave Broadband Circuits using Darlington Cell)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 本篇論文主要研究使用達靈頓技術實現微波及毫微米波寬頻放大器應用於高速資料傳輸通訊,配合完整的元件量測結果,提出寬頻混合結構達靈頓對的系統化設計與分析方法。利用砷化鎵異質接面雙極性電晶體及高速電子遷移率電晶體製程(HBT-HEMT process)來實現寬頻混合結構達靈頓放大器,並分別針對高速電子遷移率電晶體-異質接面雙極性電晶體(HEMT-HBT)達靈頓放大器、異質接面雙極性電晶體-高速電子遷移率電晶體(HBT-HEMT)達靈頓放大器、高速電子遷移率電晶體-高速電子遷移率電晶體(HEMT-HEMT)達靈頓放大器與異質接面雙極性電晶體-異質接面雙極性電晶體 (HBT-HBT)達靈頓放大器的增益、頻寬與輸入及輸出阻抗等特性分析,進一步探討達靈頓放大器的電晶體尺寸、回授電阻值、串聯提升電感值對增益、頻寬、輸入及輸出阻抗的影響,也成功的提出利用異質接面雙極性電晶體及高速電子遷移率電晶體製程實現混合結構達靈頓放大器的設計方法。另外,配合直接耦合技術(direct-coupled technique) ,此電路可進一步應用於高速資料傳輸通訊中,在四種放大器組態中,高速電子遷移率電晶體-異質接面雙極性電晶體達靈頓放大器與高速電子遷移率電晶體-高速電子遷移率電晶體達靈頓放大器頻率操作範圍可從直流至毫米波頻段,並成功驗證40-Gbps的眼圖量測,與其他三種結構相比,高速電子遷移率電晶體-異質接面雙極性電晶體達靈頓放大器擁有最佳的增益頻寬積,並有較好輸入與輸出返回損耗,此電路所實現增益頻寬積為115.64 GHz。
提出使用達靈頓對實現寬頻與小面積的無電感主動式功率分配器與主動式平衡器的設計方法,此次電路設計主要利用達靈頓對的寬頻特性與小晶片面積等優點。在設計分析中,提出達靈頓對電晶體尺寸對3-dB頻寬、增益與輸出1-dB增益壓縮點的影響,並進一步探討達靈頓對電晶體的尺寸比例與回授電阻值的設計,以同時達到較佳的增益與輸入返回損耗,主動式負載技術(active load technique)亦應用於電路設計中,以達到寬頻與小晶片面積。論文所提出的一級與兩級無電感主動式功率分配器與已發表文獻相比,分別擁有較高的頻寬增益積與晶片面積比值,分別為100.4與60.2 GHz/mm2,輸出振幅誤差皆小於0.1 dB,輸出相位誤差皆小於2度,所提出的電路亦成功通過了OC-192傳輸標準的測試且適用於高速資料傳輸通訊中。在主動式平衡器的設計中,利用一個差動達靈頓放大器來改善電路的3-dB頻寬,利用一個回授電容來補償兩輸出訊號在高頻頻段的相位誤差,此相位誤差由電晶體的寄生效應與兩路徑不同的電路架構所產生,所提出的主動式平衡器實現的3-dB頻寬為21 GHz,小訊號增益為2.5 dB,振幅誤差為1.2 dB以下,相位誤差為5度以下,量測的相位延遲小於30 ps,此電路亦成功驗證12.5-Gbps的眼圖量測中,適合應用於高速資料傳輸通訊中。
提出雙向分佈式放大器(bidirectional distributed amplifier)結合雙向正交相移鍵控調變器/解調器(QPSK modulator/demodulator)。提出一個修改的雙向分佈式放大器架構,用來改善兩輸入訊號端間的隔離度,此外,結合此雙向放大電路架構與雙向正交相移鍵控調變器/解調器,可以實現具有調變與解調功能的雙向訊號傳輸,降低收發機的電路複雜度。在雙向分佈式放大器的設計中,提出修正型雙向分佈式放大器的增益對(gain cell)電路架構,以改善雙向分佈式放大器的3-dB頻寬,此次所提出電路與已發表文獻相比較,擁有較高的增益頻寬積,此電路增益頻寬積為349.2 GHz。在雙向正交相移鍵控調變器/解調器的設計中,提出一個寬頻雙向正交相移鍵控調變器/解調器設計流程。此結合電路進一步進行數位調變及解調變的測試,在訊號調變方面,量測到的正交相移鍵控調變訊號頻譜的誤差向量振幅 (error vector magnitude)為9.9%,在訊號解調變方面,成功驗證到2-Gbps眼圖,適用高速傳輸。
最後,總結了本篇論文所提出的電路設計與所提出的電路未來可以改善的方向與工作。
摘要(英) Several microwave and millimeter-wave broadband circuits using Darlington cell are presented in this dissertation for high speed data communications. Design and analysis of the broadband hybrid Darlington cell are completely presented with the experimented results. Four broadband Darlington amplifiers using a GaAs heterojunction bipolar transistor (HBT)- high electron mobility transistor (HEMT) process are reported in Chapter 2. The gain-bandwidth analysis of the Darlington amplifiers using HEMT-HBT, HBT-HEMT, HEMT-HEMT, and HBT-HBT configurations are presented. The bandwidth, gain, input and output impedances are investigated with transistor size, feedback resistances, and series peaking inductance. The design methodology of the broadband Darlington amplifier in HBT-HEMT process is successfully developed, and the direct-coupled technique is also adopted for high speed data communications. Furthermore, the proposed monolithic HEMT-HBT and HEMT-HEMT Darlington amplifiers are achieved from dc to millimeter-wave, and successfully evaluated with 40-Gbps eye diagram. The HEMT-HBT Darlington amplifier exhibits the highest gain-bandwidth product of 115.64 GHz with good input and output return losses among the four configurations.
Two broadband and compact inductorless active power dividers and an active balun using Darlington cell are presented in Chapter 3, since the Darlington cell exhibits broadband performance and compact chip size. For the inductorless active power dividers, the 3-dB bandwidth, small-signal gain, and OP1dB versus device size ratio of the Darlington cell have been investigated. The feedback resistance and device size ratio of the Darlington cell are discussed for both better small-signal gain and input matching. An active load technique is adopted for the compact chip size and broad bandwidth. The proposed 1- and 2-stage inductorless active power dividers exhibit high gain-bandwidth product per chip area of 100.4 and 60.2 GHz/mm2 with an amplitude imbalance of 0.1 dB and a phase imbalance of 2o, respectively. The proposed power dividers exhibit potential for the ultra-high speed data rate transmission due to successful evaluation using OC-192 transmission mask with a data rate of up to 10-Gbps. For the low imbalance active balun, a differential Darlington amplifier is adopted for the 3-dB bandwidth enhancement. A feedback capacitor is designed to compensate the phase imbalance between two output ports at high frequency caused by parasitic effect of the transistors. The proposed active balun achieves a broad bandwidth of 21 GHz, an average small signal gain of 2.5 dB, a maximum amplitude imbalance of 1.2 dB, and a phase imbalance of less than 5o. The measured group delays of the two paths are lower than 30 ps with low variation for the balun. The active balun is also appropriate for high speed data communications due to successful evaluation of an eye diagram up to 12.5-Gbps.
A monolithic Ka-band bidirectional distributed amplifier (BDA) with a quadrature phase shift keying (QPSK) modulator/demodulator is presented in Chapter 4. A modified BDA topology is proposed to improve the isolation between the bidirectional ports. With the proposed circuit topology, the bidirectional transmission can be achieved with modulation/demodulation to further reduce the complexity of the transceiver. The gain cell of the BDA is investigated for the bandwidth enhancement, and a cascode Darlington amplifier is adopted. The proposed BDA exhibits a high gain-bandwidth product of 349.2 GHz for the forward and reverse paths among the previously published works. For the QPSK modulator/demodulator, a design procedure is summarized. The integrated bidirectional building block is further evaluated in the vector signal characterization of the digital modulation/demodulation. An output spectrum of the QPSK modulation signal is measured, and the measured error vector magnitude (EVM) is less than 9.9%. For the demodulation, the measured eye diagram is evaluated up to 2-Gbps.
Finally, the conclusions and future works are addressed in Chapter 5.
關鍵字(中) ★ 達靈頓
★ 砷化鎵異質接面雙極性電晶體及高速電子遷移率電晶體製程
★ 寬頻放大器
★ 正交相移鍵控調變器/解調器
關鍵字(英) ★ Darlington
★ HBT-HEMT process
★ Broadband amplifier
★ QPSK modulator/demodulator
論文目次 摘要....I
Abstract....III
Contents....VII
List of Figures....IX
List of Tables....XIV
Chapter 1 Introduction....1
1.1 Motivation....1
1.2 Literatures Survey....6
1.3 Contributions....11
1.4 Dissertation Organization....13
Chapter 2 Gain-Bandwidth Analysis of Broadband Darlington Amplifiers in HBT-HEMT Process....14
2.1 MMIC Process and Device Characteristic....15
2.1.1 HBT-HEMT Process....15
2.1.2 Device Modeling....15
2.2 Circuit Topology and Analysis....18
2.2.1 HEMT-HBT Darlington Amplifier....19
2.2.2 HBT-HEMT Darlington Amplifier....28
2.2.3 HEMT-HEMT Darlington Amplifier....31
2.2.4 HBT-HBT Darlington Amplifier....34
2.2.5 Design Procedure of Darlington Amplifier....35
2.2.6 Configuration Selection....42
2.3 Circuit Implementation....42
2.3.1 HEMT-HBT Darlington Amplifier....43
2.3.2 HBT-HEMT Darlington Amplifier....45
2.3.3 HEMT-HEMT Darlington Amplifier....45
2.3.4 HBT-HBT Darlington Amplifier....48
2.4 Experimental Results....50
2.4.1 HEMT-HBT Darlington Amplifier....50
2.4.2 HBT-HEMT Darlington Amplifier....50
2.4.3 HEMT-HEMT Darlington Amplifier....52
2.4.4 HBT-HBT Darlington Amplifier....52
2.5 Performance Summary and Discussions....56
Chapter 3 Design of Broadband Active Power Divider and Balun Using Darlington Cell for Hisgh Speed Data Communications....59
3.1 Broadband and Compact Inductorless Active Power Dividers....60
3.1.1 MMIC Process and Circuit Topology....60
3.1.2 Design Procedure of The Inductorless Broadband Active Power Divider....63
3.1.3 Circuit Implementation....67
3.1.4 Measurement Results and Discussion....67
3.2 A DC-21 GHz Low Imbalance Active Balun....77
3.2.1 MMIC Process....77
3.2.2 Broadband Darlington cell design and analysis of the feedback technique for phase imbalance compensation....77
3.2.3 Circuit Implementation....84
3.2.4 Experimental Results....86
3.3 Performance Summary and Discussions....89
3.3.1 Broadband and Compact Inductorless Active Power Dividers....89
3.3.2 A DC-21 GHz Low Imbalance Active Balun....90
Chapter 4 A Ka-band Monolithic Bidirectional Up/Down Converter for High Speed Applications....93
4.1 MMIC and Circuit Topology....93
4.1.1 MMIC Process....93
4.1.2 Circuit Topology of The BDA and QPSK Modulator/Demodulator....94
4.2 Circuit Analysis and Implementation....97
4.2.1 Broadband BDA Design and Gain cell analysis....97
4.2.2 Broadband QPSK Modulator/Demodulator Design....106
4.2.3 Bidirectional Up/Down Converter....108
4.3 Experimental Results....108
4.3.1 Broadband BDA....108
4.3.2 Bidirectional Up/Down Converter....113
4.4 Performance Summary and Discussions....120
Chapter 5 Conclusions and Future Works....124
Appendix A Derivation of Transresistance and Input/Output Impedances of HEMT-HBT Darlington Amplifier....128
Appendix B Design Parameters of HEMT-HBT, HBT-HEMT, HEMT-HEMT, and HBT-HBT Darlington Amplifiers....132
Reference....134
Publication List....142
參考文獻 [1] S. Kaeriyama, Y. Amamiya, H. Noguchi, Z. Yamazaki, T. Yamase, K. Hosoya, M. Okamoto, S. Tomari, H. Yamaguchi, H. Shoda, H. Ikeda, S. Tanaka, T. Takahashi, R. Ohhira, A. Noda, K. Hijioka, A. Tanabe, S. Fujita, and N. Kawahara, “A 40 Gb/s multi-data-rate CMOS transmitter and receiver chipset with SFI-5 interface for optical transmission systems,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3568-3579, Dec. 2009.
[2] M. Yoneyama, Y. Miyamoto, T. Otsuji, H. Toba, Y. Yamane, T. Ishibashi, and H. Miyazawa, “Fully electrical 40-Gb/s TDM system prototype based on InP HEMT digital IC technologies,” J. Lightwave Tech., vol. 18, no. 1, pp. 1262-1268, Jan. 2000.
[3] S. Mohammadi, J.-W. Park, D. Pavlidis, J.-L. Guyaux, and J. C. Garcia, “Design optimization and characterization of high-gain GaInP/GaAs HBT distributed amplifiers for high-bit-rate telecommunication,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 6, pp. 1038-1044, June 2000.
[4] D. A. Hodges, “Darlington’s contributions to transistor circuit design,” IEEE Trans. Circuits and Syst. I, vol. 46, pp.102-104, Jan. 1999.
[5] K. W. Kobayashi, “Compact low voltage low noise amplifier,” U.S. Patent 7 619 482 B1, Nov. 17, 2009.
[6] IEEE Standard 802.16, Coexistence of Fixed Broadband Wireless Access Systems, July 2001.
[7] E. Cohen, C. G. Jakobson, S. Ravid, and D. Ritter, “A bidirectional TX/RX four-element phased array at 60 GHz with RF-IF conversion block in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1439-1446, May 2010.
[8] J. Kim, and J. F. Buckwalter, “A fully integrated Q-band bidirectional transceiver in 0.12-µm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 2, pp. 57-60, Feb. 2012.
[9] K. W. Kobayashi, D. K. Umemoto, T. R. Block, A. K. Oki, and D. C. Streit, “A novel monolithic LNA integrating a common-source HEMT with an HBT Darlington amplifier,” IEEE Microw. Guided Wave Lett., vol. 5, pp. 442-444, Dec. 1995.
[10] J. Lee, and J. D. Cressler, “Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1262-1268, Mar. 2006.
[11] J.-S. Paek, B. Park, and S. Hong, “CMOS LNA with darlington-pair for UWB systems,” Electronics Letters, vol. 42, no. 16, pp.913-914, Aug. 2006.
[12] K. W. Kobayashi, R. Esfandiari, and A. K. Oki, “A novel HBT distributed amplifier design topology based on attenuation compensation techniques,” IEEE Trans. Microw. Theory Tech., vol.42, no.12, pp. 2583-2589, Dec. 1994.
[13] M.-D. Tsai, C.-S. Lin, C.-H. Lien, and H. Wang, “Broad-band MMICs based on modified loss-compensation method using 0.35-μm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 23, no. 2, pp. 496-505, Feb. 2005.
[14] K. W. Kobayashi, YaoChung Chen, I. Smorchkova, R. Tsai, M. Wojtowicz, and A. Oki, “1-Watt conventional and cascoded GaN-SiC Darlington MMIC amplifiers to 18 GHz,” in IEEE RFIC Symp., Jun. 2007, pp. 585-588.
[15] K. W. Kobayashi, “Linearized Darlington cascode amplifier employing GaAs PHEMT and GaN HEMT technologies,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2116-2122, Oct. 2007.
[16] S.-H. Weng, H.-Y. Chang, and C.-C. Chiong, “A DC-21 GHz low imbalance active balun using Darlington cell technique for high apeed data communications,” IEEE Microw. Wireless Compon. Lett., vol.19, pp.728-730, Nov. 2009.
[17] J. Kim, and J. F. Buckwalter, “Staggered Gain for 100+ GHz Broadband Amplifiers,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1123-1136, May 20011.
[18] T.-K. Lee, W.-S. Chan, and Y.-M. Siu, “Darlington feedback amplifier with good bias stability under large-signal conditions,” Electronics Letters, vol. 40, no. 20, pp.1271-1272, Sept. 2004.
[19] H.-T. Chou, J. R. Liang, and H.-K. Chiou, “V-band low-power Darlington-pair gate-pumped mixer with thin-film LC-hybrid linear combiner in 90 nm CMOS,” Electronics Letters, vol. 48, no. 16, pp.1023-1024, Aug. 2012.
[20] K.-C. Lin, H.-K. Chiou, K.-H. Chien, T.-Y. Yang, P.-C. Wu, C.-L. Ko, and Y.-Z. Juang, “A 4.2-mW 6-dB gain 5–65-GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1516-1522, Apr. 2013.
[21] H.-K. Chiou, I.-S. Chen, and W.-C. Chen, “High gain V-band active-integrated antenna transmitter using Darlington pair VCO in 0.13 m CMOS proces,” Electronics Letters, vol. 46, no. 5, pp.321-322, Mar. 2010.
[22] K. W. Kobayashi, R. Esfandiari, M. E. Hafizi, D. C. Streit, A. K. Oki, L. T. Tran, D. K. Umemoto, and M. E. Kim, “GaAs HBT wideband matrix distributed and Darlington feedback amplifiers to 24 GHz,” IEEE Trans. Microw. Theory Tech., vol.39, no. 12, pp. 2001-2009, Dec. 1991.
[23] K. W. Kobayashi, D. K. Umemoto, R. Esfandiari, A. K. Oki, L. M. Pawlowicz, M. E. Hafizi, L. Tran, J. B. Camou, K. S. Stolt, D. C. Streit, and M. E. Kim, “GaAs HBT MMIC broadband amplifiers from dc to 20 GHz,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., May 1990, pp. 19-22.
[24] K. W. Kobayashi, R. Esfandiari, A. K. Oki, D. K. Umemoto, J. B. Camou, and M. E. Kim, “GaAs heterojunction bipolar transistor MMIC dc to 10 GHz direct-coupled feedback amplifier,” in GaAs IC Symp., Oct. 1989, pp. 87-90.
[25] N. H. Sheng, W. J. Ho, N. L. Wang, R. L. Pierson, P. M. Asbeck, and W. L. Edwards, “A 30 GHz bandwidth AlGaAs-GaAs HBT direct-coupled feedback amplifier,” IEEE Microw. Guided Wave Lett., vol. 1, pp. 208-210, Aug. 1991.
[26] Y. Kuriyama, J. Akagi, T. Sugiyama, S. Hongo, K. Tsuda, N. Iizuka, and M. Obara, “DC to 40 GHz broad-band amplifiers using AlGaAs/GaAs HBT’s,” IEEE J. Solid-State Circuits, vol. 30, no. 10, pp.1051-1054, Oct. 1995.
[27] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, and M. J. W. Rodwell, “Transferred substrate HBT with 254 GHz fT,” Electron Letters, vol. 35, pp. 605-606, July 1999.
[28] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, and M. J. W. Rodwell, “Baseband amplifiers in transferred-substrate HBT technology,” in GaAs IC Symp., Oct. 1998, pp. 33-36.
[29] S.-H. Weng, H.-Y. Chang, and C.-C. Chiong, “Design of a 0.5-30 GHz Darlington amplifier for microwave broadband applications,” in IEEE MTT-S Int. Dig., Jun. 2010, pp. 1189-1192.
[30] C. T. Armijo, and R.G. Meyer, “A new wide-band Darlington amplifier,” IEEE J. Solid-State Circuits, vol. 24, pp. 1105-1109, Aug. 1989.
[31] C.-S. Lin, M.-D. Tsai, H. Wang, Y.-C. Wang, and C.-H. Chen, “A monolithic HBT broadband amplifier using modified triple Darlington configuration,” in Eur. Microw. Conf., Oct. 2004, pp. 331-334.
[32] S. B. Cohn, “A class of broadband three-port TEM-mode hybrids,” IEEE Trans. Microwave Theory Tech., vol. 19, no. 2, pp.110-116, Feb. 1968.
[33] N. Ehsan, K. Vanhille, S. Rondineau, E. D. Cullens, and Z. B. Popovic, “Broadband micro-coaxial Wilkinson dividers,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 11, pp. 2783-2789, Nov. 2009.
[34] M. Chongcheawchamnan, N. Siripon, and I. D. Robertson, “Design and performance of improved lumped-distributed Wilkinson divider topology,” Electron. Letters, vol. 37, pp. 501-503, Apr. 2001.
[35] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 1, pp. 6-8, Jan. 2002.
[36] T. Tokumitsu, S. Hara, T. Tanaka, M. Aikawa, “Active isolator, combiner, divider, and magic-T as miniaturized function blocks,” in Gallium Arsenide Integrated Circuit symp., Nov. 1988, pp. 273-276.
[37] A. Noll, “A novel 8-way active splitter for broadband gateway applications,” in Asia-Pacific Microwave Conf., Dec. 2010, pp. 524-526.
[38] H. Kikuchi, Y. Miyagawa, and T. Kimura, “Broad-band GaAs monolithic equalizing amplifier for multigigabit-per-second optical receivers,” IEEE Trans. Microwave Theory Tech., vol. 38, no. 12, pp.1916-1923, Dec. 1990.
[39] J.-Y. Huang, H.-I Wu, R. Hu, C. F. Jou, D.-C. Niu, “A DC-20GHz CMOS active power divider design,” in Asia-Pacific Microwave Conf., Dec. 2010, pp. 524-526.
[40] G. S. Barta, K. E. Jones, G. C. Herrick, E. W. Strid, “Surface-mounted GaAs active splitter and attenuator MMIC’s used in a 1-10-GHz leveling loop,” IEEE Trans. Microwave Theory Tech., vol. 34, no. 12, pp.1569-1575, Dec. 1986.
[41] M. Alfredson, A. Ouacha, R. Jonsson, “Broadband bidirectional active MMIC power splitter and combiner for feed networks,” in Asia-Pacific Microwave Conf., Dec. 2001, pp.135-138.
[42] Yasushi Ito, “Distributed and lossy match active power splitters using bridged-T low-pass filter networks,” in IEEE MTT-S Int. Micro. Symp. Dig., June 2007, pp.1901-1904.
[43] W. K. Lo, W. S. Chan, “Broadband integrated active divider and combiner based on distributed amplification,” Electronics Letters, vol.44, pp.779-780, 2008.
[44] A. Safarian, and P. Heydari, “CMOS distributed active power combiners and splitters for multi-antenna UWB beamforming transceivers,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp.1481-1791, July 2007.
[45] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.H. Lin, Y.-L. Yeh, and Y.-C. Wang, “Design and analysis of a DC-43.5-GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microwave Theory Tech., vol. 59, no. 2, pp.443-455, Feb. 2011.
[46] J. C. Park, J. Y. Park, H. S. Lee, “Fully embedded 2.4 GHz LC-balun into organic package substrate with series resonant tank circuit,” in IEEE MTT-S Int. Micro. Symp. Dig., June 2007, pp.1901-1904.
[47] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design”, IEEE Trans. Microw. Theory and Tech., vol. 55, no.6, pp. 1190-1199, June 2007.
[48] T. Shibata, S. Kimura, H. Kimura, Y. Imai, Y. Umeda, Y. Akazawa, “A design technique for a 60 GHz-bandwidth distributed baseband amplifier IC module, “ IEEE J. Solid State Circuits, vol. 39, no. 12, pp. 1537-1544, Dec. 1994.
[49] M. E. Goldfarb, J. B. Cole, and A. Platzker, “A novel MMIC biphase modulator with variable gain using enhancement-mode FET’s suitable for 3 V wireless applications,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., Dig., May 1994, pp. 99-102.
[50] T. Hiraoka, T. Tokumitsu, M. Akaike, “A minaturized broad-band MMIC frequency doubler,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 12, pp. 1932-1937, Dec. 1990.
[51] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, Jun. 2008.
[52] J. Kim, and J. Silva-Martinez, “Wideband inductorless balun-LNA employing feedback for low-power low-voltage applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 9, pp. 1593-2842, Sept. 2012.
[53] H.-H. Chiang, F.-C. Huang, C.-S. Wang, and C.-K. Wang, “A 90 nm CMOS V-Band low-noise active balun with broadband phase-correction technique,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2583-2591, Nov. 2011.
[54] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden, and J. Yoon, “Broadband active balun using combined cascode-cascade configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1790-1796, Aug. 2008.
[55] M. Kawashima, T. Nakagawa, K. Araki, “A novel broadband active balun”, in Eur. Microw. Conf., Oct. 2003, pp.495-498.
[56] T.-T. Hsu; C.-N. Kuo, “Low power 8-GHz ultra-wideband active balun”, in Silicon Monolithic Integrated Circuits in RF Systems Dig., pp.18-20, Jan. 2006.
[57] C. Viallon, D. Venturin, J. Graffeuil, T. Parra, “Design of an original K-band active balun with improved broadband balanced behavior,” IEEE Microw. Wireless Compon. Lett., vol.15, pp.280-282, April 2005.
[58] S.-Y. Lee, and C.-C. Lai, “A 1-V wideband low-power CMOS active differential power splitter for Wireless Communication,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1593-1600, Aug. 2007.
[59] D. H. Lee, J. Han, C Park, and S. Hong, “A CMOS active balun using bond wire inductors and a gain boosting technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.676-678, Sept. 2007.
[60] B.-J. Huang, B.-J. Huang, K.-Y. Lin, and H. Wang, “A 2-40 GHz active balun using 0.13 m CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 164-166, Mar. 2009.
[61] A. Jahanian, and P. Heydari, “A CMOS distributed amplifier with distributed active input balun using GBW and linearity enhancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1331-1341, May 2012.
[62] A. H. Baree, I. D. Robertson, “Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique,” IEEE Trans. Microw. Theory and Tech., vol. 45, no.2, pp.188-195, Feb. 1997.
[63] I. D. Robertson and A. H. Aghvami, “A novel wideband MMIC active balun,” in Eur. Microw. Conf., Oct. 1990, pp. 419-423.
[64] M. Ferndahl, H.-O. Vickes, “The matrix balun—a transistor-based module for broadband applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 53-60, Jan. 2009.
[65] Y. Park, C.-H. Lee, J. D. Cressler, J. Laskar, “Theoretical analysis of a low dispersion SiGe LNA for ultra-wideband applications,” IEEE Microw. Wireless Compon. Lett., vol.16, pp.517-519, Sept. 2006.
[66] S.-J. Chung, S.-M. Chen, and Y.-C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542-547, Feb. 2003.
[67] J. M. Yang, R. Lai, Y. H. Chung, M. Nishimoto, M. Battung, W. Lee, and R. Kagiwada, “Compact Ka-Band bi-directional amplifier for low-cost electronic scanning array antenna,” IEEE J. Solid-State Circuit, vol. 39, no. 10, pp. 1716-1719, Oct. 2004.
[68] J. W. Archer, O. Sevimli, and R. A. Batchelor, “Bi-directional amplifiers for half-duplex transceivers,” in GaAs IC Symp., Oct. 1999, pp.251-254.
[69] J. M. Yang, Y. H. Chung, M. Nishimoto, R. Lai, R. Tsai, R. Kagiwada, and C. C. Ymg, “High performance voltage controlled bi-directional amplifiers in support of component reuse for large aperture phase array,” in IEEE MTT-S Int. Micro. Symp. Dig., Jun. 2002, pp.65-68.
[70] M.-K. Cho, D. Baek, and J.-G. Kim, “Compact X-band CMOS bidirectional gain amplifier without T/R switches,” Electronics Letters, vol. 49, no. 1, pp.1271-1272, Jan. 2013.
[71] W. K. Lo, W. S. Chan, C. W. Li, and C. K. Leung, “Self-phase equalised bidirectional distributed amplifier,” Electronics Letters, vol.43, pp.626-627, May 2007.
[72] T. Tsukii, S. G. Houng, and M. J. Schindler, “Wideband bidirectional MMIC amplifiers for new generation T/R module,” in IEEE MTT-S Int. Micro. Symp. Dig., Jun. 1990, pp.907-910.
[73] N. P. Mehta, and P. N. Shastry, “Design guidelines for a novel bandpass distributed amplifier,” in Eur. Microw. Conf., Oct. 2005.
[74] S. L. G. Chu, M. J. Schindler, A. M. Bertrand, and T. Tsukii, “A novel broadband bidirectional matrix amplifier,” in GaAs IC Symp., Oct. 1991, pp.315-318.
[75] Z. El-Khatib, L. MacEachern, and S. A. Mahmoud, “Linearised bidirectional distributed amplifie with 20 dB IM3 distortion reduction,” Electronics Letters, vol.46, pp.1089-1090, Jul. 2010.
[76] P. Chen, P.-C. Huang, J.-J. Kuo, and H. Wang, “A 22-31 GHz distributed amplifier based on high-pass transmission lines using 0.18 m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 160-162, Mar. 2004.
[77] S. Sim, L. Jeon, and J.-G. Kim, “A compact X-band bi-directional phased-array T/R chipset in 0.13 m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 496-505, Jan. 2013.
[78] J.-H. Tsai, and T.-W. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
[79] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350-1360, May 2011.
[80] H.-Y. Chang, T.-W. Huang, H. Wang, Y.-C. Wang, P.-C. Chao, and C.-H. Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 20-30, Mar. 2004.
[81] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J.G.J. Chern, “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006.
[82] H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5 m E/D-PHEMT process for millimeter-wave applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 805-807, July 2008.
[83] H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator/ Modulator With Low LO Power,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 332-334, May 2008.
[84] S. Sarkar, D.A. Yeh, S. Pinel, and J. Laskar, “60-GHz direct-conversion gigabit modulator/demodulator on liquid-crystal polymer,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1245-1252, March 2006.
[85] S.-H. Weng, C.-H. Shen, and H.-Y. Chang, “A wide modulation bandwidth bidirectional IQ modulator/demodulator using 0.18 μm CMOS process for microwave and millimeter-wave gigabit applications,” in EuMIC, Oct. 2012, pp. 8-11.
[86] D. C. Streit, D. K. Umemoto, K. W. Kobayashi, and A. K. Oki, “Monolithic HEMT-HBT integration by selective MBE,” IEEE Trans. Elect. Dev., vol. 42, no. 4, pp. 618-623, Apr. 1995.
[87] K. W. Kobayashi, D. C. Streit, D. K. Umemoto, T. R. Block, and A. K. Oki, “A monolithic HEMT-HBT direct-coupled amplifier with active input matching,” IEEE Microw. Guided Wave Lett., vol. 6, pp. 55-57, Jan. 1996.
[88] S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “Direct parameter-extraction method for HBT small-signal mode,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 529-536, Feb. 2002.
[89] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 7, pp. 1151-1159, July. 1988.
[90] Adel S. Sedra, and Kenneth C. Smith, Microelectronic Circuits, Oxford University Press, Inc., 2004, pp. 831-833.
[91] “Sonnet® User’s Guide,” 12th ed. Sonnet Software, Inc., North Syracuse, NY, 2009.
[92] H. Wang, R. Lai, L. Tran, J. Cowles, Y. C. Chen, E. W. Lin, H. H. Liao, M. K. Ke, T. Block, and H. C. Yen, “A single-chip 94 GHz frequency source using InP-based HEMT-HBT integration technology,” in IEEE RFIC Symp. Dig., June 1998, pp. 275-278.
[93] S. Kimura, Y. Imai, Y. Miyamoto, “Direct-coupled distributed baseband amplifier IC’s for 40-Gb/s optical communication,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1374-1379, Oct. 1996.
[94] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 2004, pp. 295-298.
[95] S.-H. Weng, H.-Y. Chang, C.-C. Chiong, and Y.-C. Wang, “Gain-bandwidth analysis of broadband Darlington amplifier in HBT-HEMT process,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, pp. 3458-3473, Nov. 2012.
[96] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, “MESFET distributed amplifier design guidelines,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 3, pp. 268-275, Mar. 1984.
[97] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998, ch. 7.
[98] J.-C. Chien, and L.-H. Lu, “40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-m CMOS,” IEEE J. Solid-State Circuit, vol. 42, no. 12, pp. 2715-2725, Dec. 2007.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明