博碩士論文 955201111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.191.234.89
姓名 王俊傑(Jiunn-Jye Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 順從式足型機器人足部力量控制設計
(Force Control Design for Leg of a Compliant Hexapod Robot)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 順從式足型機器人(Compliant Hexapod Robot) 是一種同時具有足型和輪型機器人特徵的機器人架構,藉由不斷的旋轉順從足部機器人可以順利的克服障礙物並達成移動及轉向等控制。當機器人在不同性質的地面移動時會產生不同的摩擦力,造成機器人移動距離控制上的差異,因此本論文的目的在研究順從式足型機器人的足部力量控制,藉以改善順從式足型機器人在移動時的操控性,為了實現足部力量控制本研究在控制命令中定義了4bits 的空間,所以馬達控制器總共可以產生16種不同的PWM 脈波寬度和馬達力量輸出。新增的足部力量控制不但增加機器人在移動時的操控性,以及轉向控制穩定性,此一架構也提供特殊移動步態設計上可行性。
摘要(英) Due to the movement of Compliant Hexapod Robot is achieved by the force between legs and ground. Therefore, different roughness of land could result in different control force.
The purpose of this paper is to design the control force of complianthexapod robots so as to improve the stability of Compliant Hexapod Robot. In order to accurately control the legs of a robot, 4-bit force command is proposed.
The force command would generate 16 kinds of PWM duties to change the motor output. The proposed scheme could also provide the feasibility to design special gaits.
關鍵字(中) ★ 脈波寬度調變
★ 順從式足型機器人
★ 足部力量控制
關鍵字(英) ★ Pulse Width Modulation (PWM)
★ Compliant Hexapod Robot
★ Force Control for Leg
論文目次 第一章 緒論
1.1 前言
1.2 文獻回顧
1.3 研究動機
1.5 論文組織
1.4 論文貢獻
第二章 理論基礎
2.1 生物的運動原理與應用
2.2 步伐型態種類
第三章 順從式足型機器人系統架構
3.1 順從式足型機器人外觀
3.2 控制器選擇
3.2.1 數位訊號控制器(Microchip dsPIC33FJ256GP710)
3.2.2 微控制器(Microchip PIC18F4520)
3.3 無線傳輸系統
3.4 致動器與迴授控制
3.4.1 致動器
3.4.2 編碼器
3.5 足部架構
3.6 供應電源的選用
3.7 其餘相關電路應用
3.7.1 功率放大電路
3.7.2 煞車電路
第四章 步態控制方法與足部控制力量
4.1步態規劃設計
4.1.1 對稱式三角步態
4.1.2 站立
4.1.3 準備動作
4.1.4 前進
4.1.5 後退
4.1.6 右轉
4.1.7 左轉
4.1.8 跨越障礙步態
4.1.9 爬坡步態
4.2軟體介紹
4.2.1 整合式開發環境軟體 (MPLAB IDE)
4.2.2 線上除錯器(MPLAB ICD2)
4.2.3 實驗版
4.3 步態控制核心電路
4.3.1 分散式控制架構
4.3.2 步態控制電路設計
4.4 足部控制核心電路
4.4.1 接受步態命令與判斷
4.4.2 足部定位迴授控制
4.5 足部力量設計
4.5.1 馬達控制之脈波寬度調變(PWM)模組
4.5.2 微控制器之脈波寬度調變(PWM)應用
4.5.3 足部力量控制
第五章 實驗結果與討論
5.1 不同力量時的無載測量差異性
5.2 機器人動態實驗
5.2.1 機器人前進
5.2.2 機器人後退
5.2.3 機器人右轉
5.2.4 機器人左轉
5.2.5 機器人跨越障礙物
5.2.6 機器人爬坡
5.2.7 機器人撞擊障礙物
5.2.8 機器人目的地定位控制
第六章 結論與建議
6.1 結論
6.2 建議
參考文獻
著作目錄
參考文獻 [1] H. Mori, and M. Sano, "A guide dog robot harunobu-5-following a person," IEEE/RSJ International Workshop on Intelligent Robots and Systems, vol. 1, pp. 397-402, 1991.
[2] R. Goertz, and R. Thompson, "Electronically controlled manipulator ," Nucleonics, pp. 46-47, 1954.
[3] http://www.aibo.com/,日本 SONY 機器狗。
[4] http://word.honda.com/robot/,HONDA ASIMO人型機器人。
[5] S. Hayati, " The rocky 7 Rover:A mars sciencecraft prototype, " Jet Propilsion Laboratory, California Institute of Technology, International Conference on Robotics and Automation, 1997.
[6] R. Goertz, and R. Thompson, " Electronically controlled manipulator, " Nucleonics, pp. 46-47, 1954.
[7] D. L. Akin, M. L. Minsky, E. D. Thiel, and C. R. Kurlzman, " Space applications of automation and robots and machine intelligence systems (ARAMIS)-Phase II," NASA Contract Rep. #3734, 1983.
[8] C. R. Weisbin, and G. Rodriguez, "NASA robotics research for planetary surface exploration, " IEEE Robotics & Automation Magazine, vol. 7, no. 4, pp. 25-34, 2000.
[9] C. R. Stoker, D. R. Burch, B. P. Hine, and J. Barry, "Antarctic undersea exploration using a robotic submarine with a Telepresence user interface," IEEE Expert, vol. 10, no. 6, pp.14-23, 1995.
[10] J. S. Robert, N. Ryoji, and N. Junji, " Telepresence mobile robot for security applications, " Proceedings. IECON’91., International Conference, Industrial Electronics, Control and Instrumentation, vol. 2, pp. 1063-1066,1991.
[11] D.M. Wilson, " Insect walking ," Annual Rev. of Entomology, 11, pp.103-122, 1996.
[12] H. Cruse, Th. Kindermann, M. Schumm, J. Dean, J. Schmitz, "Walknet - abiologically inspired network to control six-legged walking," Neural Networks, 11, 1435-1447, R. Brooks, S. Grossberg (eds.), 1998.
[13] R.A. Brooks, "A robust layered control system for a mobile robot," IEEE Journal of Robotics and Automation, vol RA-2, No. 1, pp.14-23, March, 1986.
[14] R.A. Brooks, "A robot that walks:Emergent behaviors from a Carfully evolved network," Neural Computation, No.1,pp.253-62, 1989.
[15] R.A. Brooks, The Behavior Language ; User’s Guide, MIT A.I. Memo 1227, 1990.
[16] R. B. McGhee and G. I. Iswandhi, "Adaptive locomotion of a multilegged robot over rough terrain, " IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 4, pp. 176–182, 1979.
[17] A. P. Bessonov and N. V. Umnov, " The analysis of gaits in six-legged vehicles according to their static stability," in Proc. Symp. Theory Practice Rob. Manipulat., Udine, Italy,1973.
[18] J. M. Yang and J. H. Kim, "A fault tolerant gait for a hexapod robot over uneven terrain, " IEEE Trans. Syst., Man, Cybern., B,vol. 30, pp. 172–180, Feb. 2000.
[19] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, Jr. H. B. Brown, D. McMordie, U. Saranli, R. J. Full, and D. E. Koditschek, "RHex-a simple and highly mobile hexapod robot," Autonomous Robots, vol. 11, pp. 207-220, 2001.
[20] R. Altendorfer, U. Saranli, H. Komsuoglu, D. Koditschek, M. Buehler, N. Moore, and D. McMordie, Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot, 2000.
[21] D. Campbell, and M. Buehler, "Stair descent in the simple hexapod 'RHex' ," IEEE International Conference on Robotics and Automation, vol. 1, pp. 1380-1385, 2003.
[22] D. McMordie, C. Prahacs, and M. Buehler, "Towards a dynamic actuator model for a hexapod robot," IEEE International Conference on Robotics and Automation, vol. 1, pp. 14-19, 2003.
[23] E. Z. Moore, D. Campbell, F. Grimminger, and M. Buehler, "Reliable stair climbing in the simple hexapod 'RHex' ," IEEE International Conference on Robotics and Automation, vol. 3, pp. 11-15, 2002.
[24] Pei-Chun Lin, H. Komsuoglu, and D. E. Kodistchek, "A leg configuration sensory system for dynamical body state estimates in a hexapod robot," IEEE International Conference on Robotics and Automation, vol. 1, pp. 1391-1396, 2003.
[25] U. Saranli, M. Buehler, and D. E. Koditschek, "Design, modeling and preliminary control of a compliant hexapod robot," IEEE International Conference on Robotics and Automation, vol. 3, pp. 2589-2596, 2000.
[26] U. Saranli, and D. E. Koditschek, "Template based control of hexapedal running," IEEE International Conference on Robotics and Automation, vol. 1, pp. 1374-1379, 2003.
[27] 郭嘉興,遠端監控功能之順從式足型機器人,國立中央大學電機工程學系碩士論文,2004。
[28] 陳廷熠,順從式足型機器人設計與改良,國立中央大學電機工程學系碩士論文,2007。
[29] H. J. Chiel, R. D. Beer, R. D. Quinn, and K. S. Espenschied, "Robustness of a distributed neural network controller for locomotion in a hexapod robot," IEEE Transactions on Robotics and Automation, pp. 293-303, 1992.
[30] K. S. Espenschied, R. D. Quinn, R. D. Beer, and H. J. Chiel, "Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot," Robotics and Autonomous Systems, pp. 59-64, 1996.
[31] Microchip Technology Inc, dsPIC33FJ256GP710 datasheet, 2006.
[32] Microchip Technology Inc, PIC18F4520 datasheet, 2004.
[33] 曾百由,dsPIC數位訊號控制器原理與應用,台北:宏友圖書開發股份有限公司,2005。
[34] 曾百由,微處理器原理與應用(組合語言與PIC18微控制器), 台北:五南圖書出版股份有限公司,2006。
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2008-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明