博碩士論文 955201128 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:34.225.194.144
姓名 黃秉偉(Bing-Wei Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於貪睡靜態記憶體之有效診斷與修復技術
(Efficient Diagnosis and Repair Techniques for Drowsy Static Random Access Memories)
相關論文
★ 應用於三元內容定址記憶體之低功率設計與測試技術★ 用於隨機存取記憶體的接線驗證演算法
★ 用於降低系統晶片內測試資料之基礎矽智產★ 內容定址記憶體之鄰近區域樣型敏感瑕疵測試演算法
★ 內嵌式記憶體中位址及資料匯流排之串音瑕疵測試★ 用於系統晶片中單埠與多埠記憶體之自我修復技術
★ 用於修復嵌入式記憶體之基礎矽智產★ 自我修復記憶體之備份分析評估與驗證平台
★ 使用雙倍疊乘累加命中線之低功率三元內容定址記憶體設計★ 可自我測試且具成本效益之記憶體式快速傅利葉轉換處理器設計
★ 低功率與可自我修復之三元內容定址記憶體設計★ 多核心系統晶片之診斷方法
★ 應用於網路晶片上隨機存取記憶體測試及修復之基礎矽智產★ 應用於內嵌式記憶體之高效率診斷性資料壓縮與可測性方案
★ 應用於隨機存取記憶體之有效良率及可靠度提升技術★ 應用於特殊半導體記憶體之測試與可靠性設計技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在單一系統晶片(SOC)的設計中,記憶體佔有很重要的角色。而且記憶體通常佔據晶片大部份的面積。因此記憶體的良率會對整個晶片的良率有決定性的影響。如果想要提升晶片的良率,最有效的做法就是採用提升記憶體良率的技術。診斷(diagnosis)與修復(repair)是目前最常用的兩種記憶體良率提升的技術。另一方面,漏電流(leakage current)是設計深次微米單一系統晶片的另一個挑戰。貪睡記憶體(drowsy SRAM)是其中一種降低漏電流的做法。在本篇論文中,我們針對貪睡記憶體提出有效率的診斷與修復技術。
我們針對貪睡記憶體提出可以區分開貪睡瑕疵與一般瑕疵的 March D2 演算法。接著我們進一步提出可以區分開六種貪睡瑕疵的 March D6 演算法。March D6 的測試複雜度是O((10*log2N+17+9*log2W)*N),其中N表示記憶體單元的個數;W表示記憶體單元的位元數。另外我們針對貪睡記憶體提出有效的自我修復方案。新的修復方案可以使用貪睡遮蔽暫存器(drowsy mask register)修復貪睡瑕疵。模擬結果顯示新修復方案的修復率是91%高於一般方案的修復率67%。
摘要(英) Memory core is one key component in system-on-chip (SOC) designs. Also, memory cores usually represent a significant portion of the chip area. Therefore, the yield of memory cores dominates the yield of the chip. Efficient yield-improvement techniques for memory cores thus are essential for improving the yield of the chip. Diagnosis and repair are two major techniques for improving the yields of memory cores. On the other hand, leakage power issue is another challenge for designing nano-scale SOCs. Drowsy static random access memory (SRAM) is one possible candidate of memory core with low-leakage power consumption. Therefore, we propose efficient diagnosis and repair techniques for drowsy SRAMs in this thesis.
First, we propose a March D2 algorithm for distinguishing drowsy faults (DFs) from non-drowsy faults (NDFs). We also propose a March D6 diagnosis algorithm for distinguishing all DFs of drowsy SRAMs. The test complexity of a March D6 algorithm is O((10*log2N+17+9*log2W)*N), where N represents the number of words of the memory under test; W represents the word width of memory. Second, an efficient built-in self-repair (BISR) scheme is proposed to repair defective drowsy SRAMs. A new redundancy analysis (RA) algorithm is proposed to allocate redundancies of the drowsy SRAM with spare rows, spare columns, and drowsy-masking registers (DMRs) [2]. The proposed BISR scheme can repair DFs by disabling the drowsy operation mode of the corresponding rows with DMRs. Simulation results show that the repair rate (the ratio of the number of repaired memories to the number of defective memories) of the proposed RA algorithm is 91%, which is better than that of repair-most algorithm which offers 67% repair rate.
關鍵字(中) ★ 貪睡記憶體
★ 診斷
★ 自我修復
關鍵字(英) ★ drowsy SRAM
★ diagnosis
★ built-in self-repair
論文目次 Chapter 1 Introduction ............................................................................................................ 1
Chapter 2 Functional Faults of Drowsy SRAMs .................................................................... 5
2.1 Drowsy SRAM ....................................................................................................... 5
2.2 Typical RAM Faults ............................................................................................... 6
2.3 Drowsy Faults ......................................................................................................... 7
Chapter 3 Diagnosis Algorithms for Drowsy SRAMs .......................................................... 11
3.1 Algorithm for Distinguishing Drowsy Faults from Non-Drowsy Faults ............. 11
3.2 Algorithm for Distinguishing Drowsy Faults ....................................................... 16
Chapter 4 A Built-In Self-Repair Scheme for Drowsy SRAMs ........................................... 34
4.1 Redundancy Architecture and Reconfiguration Scheme ...................................... 35
4.2 Redundancy Analysis Flow .................................................................................. 37
4.3 Built-In Self-Repair Design .................................................................................. 41
Chapter 5 Experimental Results ............................................................................................ 48
5.1 Repair Rate Analysis ............................................................................................ 48
5.2 Hardware Implementation .................................................................................... 56
Chapter 6 Conclusion and Future Work ................................................................................ 58
Reference ................................................................................................................................. 59
參考文獻 [1] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Circuit and microarchitectural techniques for reducing cache leakage power,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 12, pp. 167-184, Feb. 2004.
[2] W. Pei, W.-B. Jone, and Y. Hu, "Fault modeling and detection for drowsy SRAM caches, ” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, pp. 1084-1100, June 2007.
[3] J.-F Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu, “March-based RAM diagnosis algorithms for stuck-at and coupling faults,” in Proc. Int. Test Conf. (ITC), Baltmore, Oct. 2001, pp. 758–767.
[4] C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu, “Built-in redundancy analysis for memory yield improvement, ” IEEE Trans. Reliability, vol. 52, no. 4, pp. 386-399, Dec. 2003.
[5] R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu, "Raisin: redundancy analysis algorithm simulation," IEEE Design & Test of Computers, vol. 24, pp. 386-396, 2007.
[6] S. Hamdioui and A. J. Van De Goor, “An experimental analysis of spot defects in SRAMs: realistic fault models and tests,” in Proc. Asian Test Symposium, 2000, pp. 131-138.
[7] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F. P. Higgins, and J. L. Lweandowski, “Built in self repair for embedded high density SRAM,” in Proc. Int. Test Conf. (ITC), 1998, pp. 1112–1119.
[8] V. Schober, S. Paul, and O. Picot, “Memory built-in self-repair using redundant words,” in Proc. Int. Test Conf. (ITC), 2001, pp. 995–1001.
[9] Y. Nagura, M. Mullins, A. Sauvageau, Y. Fujiwara, K. Furue, R. Ohmura, T. Komoike, T. Okitaka, T. Tanizaki, K. Dosaka, K. Arimito, Y. Koda, and T. Tada,“Test cost reduction by at-speed BISR for embedded DRAMs,” in Proc. Int. Test Conf. (ITC), 2001, pp. 182–187.
[10] S. Nakahara, K. Higeta, M. Kohno, T. Kawamura, and K. Kakitani, “Built-in self-test for GHz embedded SRAMs using flexible pattern generator and new repair algorithm,” in Proc. Int. Test Conf. (ITC), 1999, pp. 301–310.
[11] D. K. Bhavsar, “An algorithm for row-column self-repair of RAMs and its implementation in the Alpha 21264,” in Proc. Int. Test Conf. (ITC), 1999, pp. 311–318.
[12] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and H. Hidaka, “A built-in self-repair analyzer (CRESTA) for embedded DRAMs,” in Proc. Int. Test Conf. (ITC), 2000, pp. 567–574.
[13] D. Xiaogang, S. M. Reddy, W.-T. Cheng, J. Rayhawk, and N. Mukherjee, “At-speed built-in self-repair analyzer for embedded word-oriented memories,” in Proc. Int. Conf. VLSI Des., 2004, pp. 895–900.
[14] M. Nicolaidis, N. Achouri, and S. Boutobza, “Optimal reconfiguration functions for column or data-bit built-in self-repair,” in Proc. Conf. Des., Autom., Test Eur. (DATE), 2003, pp. 590–595.
[15] M. Nicolaidis, N. Achouri, and S. Boutobza, “Dynamic data-bit memory built-in self-repair,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD), 2003, pp. 588–594.
[16] J.-F. Li, J.-C. Yeh, R.-F. Huang, C.-W.Wu, P.-Y. Tsai, A. Hsu, and E. Chow, “Abuilt-in self-repair scheme for semiconductor memories with 2-D redundancy,” in Proc. Int. Test Conf. (ITC), 2003, pp. 393–402.
[17] J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu, “A built-in self-repair design for RAMs with 2-D redundancy,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp. 742–745, Jun. 2005.
[18] C.-L. Su, R.-F. Huang, and C.-W.Wu, “A processor-based built-in self-repair design for embedded memories,” in Proc. 12th IEEE Asian Test Symp. (ATS), 2003, pp. 366–371.
[19] C.-L. Su, Y.-T. Yeh, and C.-W. Wu, “An integrated ECC and redundancy repair scheme for memory reliability enhancement,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst. (DFT), 2005, pp. 81–89.
[20] A. Benso, S. Chiusano, G. D. Natale, and P. Prinetto, “An on-line BIST RAM architecture with self-repair capabilities,” IEEE Trans. Reliab., vol. 51, no. 1, pp. 123–128, Mar. 2002.
[21] Y. Zorian and S. Shoukourian, “Embedded-memory test and repair: infrastructure IP for SoC yield,” IEEE Des. Test Comput., vol. 20, no. 3, pp. 58–66, May/Jun. 2003.
[22] C.-D. Huang, J.-F. Li, and T.-W. Tseng, “ProTaR: an infrastructure IP for repairing RAMs in SOCs,” IEEE Trans. Very Large Scale Integration Systems, vol.15, no.10, pp. 1135-1143, Oct. 2007.
[23] C.-F. Wu, C.-T. Huang, K.-L. Cheng, C.-W. Wang, and C.-W. Wu, “Simulation-based test algorithm generation and port scheduling for multi-port memories", in Proc. IEEE/ACM Design Automation Conf. (DAC), Las Vegas, 2001, pp. 301-306
[24] T.-W. Tseng, C.-H. Wu, Y.-J. Huang, J.-F. Li, Alex Pao, K. Chiu, and E. Chen, “A built-in self-repair scheme for multiport RAMs,” in Proc. IEEE VLSI Test Symp. (VTS), (Berkeley), 2007, pp. 355-360.
[25] V. Vardanian and Y. Zorian, “A march-based fault location algorithm for static random access memories,” in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), France, 2002, pp. 62–67.
[26] T. J. Bergfeld, D. Niggemeyer, and E. M. Rudnick, “Diagnostic testing of embedded memories using BIST,” in Design, Automation and Test in Europe Conference and Exhibition 2000. Proceedings, 2000, pp. 305-309.
62
[27] D. Niggemeyer and E. M. Rudnick, “Automatic generation of diagnostic March tests,” in VLSI Test Symposium, 19th IEEE Proceedings on. VTS, 2001, pp. 299-304.
[28] J.-F. Li and C.-D. Huang, “An efficient diagnosis scheme for random access memories,” in Proc. IEEE Asian Test Symp. (ATS), Pintung, 2004, pp. 277-282.
[29] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in self-test and self-diagnosis scheme for embedded SRAM,” in Proc. 9th IEEE Asian Test Symp. (ATS),Taipei, 2000, pp. 45-50
[30] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator,” in Proc. IEEE Int'l Symp. on Defect and Fault Tolerance in VLSI Systems (DFT), Albuquerque, Nov. 1999, pp. 165-173.
[31] M. Sharifkhani and M. Sachdev, “Segmented virtual ground architecture for low-power embedded SRAM,” IEEE Trans. on Very Large Scale Integration (VLSI) System, vol. 15, pp. 196-205, Feb. 2007.
[32] F.-S. Lai and C.-F. Lee, “On-chip voltage down converter to improve SRAM read/write margin and static power for sub-nano CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 2061-2070, Sep. 2007.
指導教授 李進福(Jin-Fu Li) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明