博碩士論文 955202014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.141.202.54
姓名 強芝瑋(Chih-Wei Charng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在無線感測網路下處理不同重要性區域的覆蓋問題
(Coverage of the Weighted Field in Wireless Sensor Networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
★ 衛星上可重組化計算之安全FPGA動態部分可重組架構★ 衛星網路之基於空間多樣性的前導訊號設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 無線感測網路(wireless sensor networks, WSNs)的應用很廣,常用在監測/偵測環境。這些應用大部分都有覆蓋(coverage) 的問題。此問題主要就是找尋較少的感測器來偵測事件(event)的發生,且讓感測器覆蓋住所有事件可能發生的地方。通常被監測區域會隨著區域的重要程度,而有不同程度的感測需求。較重要的區域會有較高的感測需求。但大部份的論文,常假設偵測範圍內,每個區域都有相同的重要性。
另外,感測器的感測範圍(sensing range)也常會受到距離的影響,造成感測機率隨著距離增大而降低。在此篇論文中我們採取機率式感測模型(probabilistic detection model)。我們希望使用最少的感測器個數,覆蓋具有不同重要性需求的區域。首先,我們證明用最少感測器來達成完全覆蓋是一個NP-完成性的問題。接著我們提出一個近似(approximation)的演算法來尋找較佳的感測器擺放位置。此外,我們也提出了此一問題理論上需佈置感測器的漸近下限(lower bound)值。從實驗的結果,可以得知我們的方法,找出的感測器個數最差是漸近下限的3倍。
摘要(英) The wireless sensor networks (WSNs) are widely used in many applications to monitor/sense environmental conditions. Most of these applications have the coverage problem. The coverage problem is to place minimal number of sensors which can detect the events in a sensing field. If every point in a sensing field is covered by at least one sensor, the sensing field is full coverage. In the real applications, the sensing requirement of a region depends on the importance of the region. A more important region requires a higher coverage rate or detection probability. However, most of researchers pay less attention to the issue that different regions in a sensing field have different important degrees.
Due to the signal attenuation and noise under realistic environment, the detection probability of a sensor will decrease with increasing its sensing distance. Therefore, we use the probabilistic detection model instead of the binary detection model to solve the coverage problem in which different regions of a sensing field have different important degrees. The region with higher important degree is, the higher event detection probability is required. First, we prove that finding the minimum number of sensors to cover a sensing field with different important regions is NP-complete. Then we propose an approximation algorithm to solve this problem in polynomial time and find the lower bound of this problem. Simulation results show that the solution of our approximation algorithm in the number of sensors is less than three times than the lower bound.
關鍵字(中) ★ 覆蓋問題
★ 機率式感測模型
★ 無線感測網路
★ NP-完成性
關鍵字(英) ★ Coverage problem
★ probabilistic detection model
★ wireless sensor networks
★ NP-complete
論文目次 Chapter 1 Introduction...1
Chapter 2 Preliminary... 4
2.1 Related works... 4
2.2 Detection model... 5
2.3 Our Detection Model and Our Sensing Field Setting.. 7
Chapter 3 Sensor Placement for Gradually Weighted Field.. 11
3.1 Proof SCGWF is NP-complete... 11
3.2 Our Approximation Algorithm.. 21
3.3 Lower Bound Setting.. 30
Chapter 4 Simulation Results.. 34
Chapter 5 Conclusions.. 44
References... 45
參考文獻 [1] Troops start Mexico border duty B.B.C. News, June 2006.
http://news.bbc.co.uk/2/hi/americas/5051720.stm
[2] http://en.wikipedia.org/wiki/United_States%E2%80%93Mexico_barrier
[3] N. Ahmed, S. Kanhere, and S. Jha, “Probabilistic Coverage in Wireless Sensor Networks,” in Proceedings of IEEE on Local Computer Networks (LCN), pp. 672–681, Nov. 2005.
[4] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, “Deploying Wireless Sensors to Achieve Both Coverage and Connectivity,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 131-142, May 2006.
[5] Y. L. Cai, W. Lou, M. L. Li, and X. Y. Li, “Target-Oriented Scheduling in Directional Sensor Networks,” in Proceedings of Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pp. 1550-1558, May 2007.
[6] M. Cardei, J. Wu, M. Lu, and M. O. Pervaiz, “Maximum Network Lifetime in Wireless Sensor Networks with Adjustable Sensing Ranges,” in Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), vol. 3, pp. 438- 445, Aug. 2005.
[7] R. S. Chang, and S. H. Wang, “Self-Deployment by Density Control in Sensor Networks,” Journal of Vehicular Technology, vol. 57, no. 3, pp. 1745-1755, May 2008.
[8] S. Chellappan, X. Bai, and B. Ma, “Mobility Limited Flip-Based Sensor Networks Deployment,” Journal of Parallel and Distributed Systems, vol. 18, no. 2, pp. 199-211, Feb. 2007.
[9] S. Cook, “The Complexity of Theorem Proving Procedures,” in proceedings of ACM Symposium on Theory of Computing, pp. 151-158, May 1971.
[10] A. Elfes, “Occupancy Grids: a Stochastic Spatial Representation for Active Robot Perception”, in Proceedings of Conference on Uncertainty in AI, pp. 60-70, July 1990.
[11] C. Fang and C. P. Low, “Redundant Coverage in Wireless Sensor Networks,” in Proceedings of IEEE International Conference on Communications (ICC), pp. 3535-3540, June 2007.
[12] M. Hefeeda and M. Bagheri, “Randomized K-Coverage Algorithms for Dense Sensor Networks,” in Proceedings of Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM ), pp. 2376-2380, May 2007.
[13] M. Hefeeda and H. Ahmadi, “A Probabilistic Coverage Protocol for Wireless Sensor Networks,” in Proceedings of IEEE International Conference on Network Protocols (ICNP), pp. 41-50, Oct. 2007.
[14] J. Jeong, S. Sharafkandi, and D. Du, “Energy-Aware Scheduling with Quality of Surveillance Guarantee in Wireless Sensor Networks,” in Proceedings of the Workshop on Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks (DIWANS), pp. 55–64, Sep. 2006.
[15] W. C. Ke, B. H. Liu, and M. J. Tsai, “Constructing a Wireless Sensor Network to Fully Cover Critical Grids by Deploying Minimum Sensors on Grid Points is NP-Complete,” Journal of Computers, vol. 56, no. 5, pp. 710-715, May 2007.
[16] S. Kumar, T. H. Lai, and A. Arora, “Barrier Coverage With Wireless Sensors,” in International Conference on Mobile Computing and Networking (MobiCom), pp. 284-298, Aug. 2005.
[17] D. Lichtenstein, “Planar Formulae and Their Uses,” SIAM Journal on Computing, vol. 11, no. 2, pp. 329-343, May 1982.
[18] B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong Barrier Coverage of Wireless Sensor Networks,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 411-419, May 2008.
[19] S. S. Ram, D. Manjunath, S. K. Iyer, and D. Yogeshwaran, “On the Path Coverage Properties of Random Sensor Networks,' Journal of Mobile Computing, vol. 6, no. 5, pp. 446-458, May 2007.
[20] J. P. Sheu and H. F. Lin, “Probabilistic Coverage Preserving Protocol with Energy Efficiency in Wireless Sensor Networks,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp. 2631-2636, March 2007.
[21] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri, “Target Tracking with Binary Proximity Sensors: Fundamental Limits, Minimal Descriptions, and Algorithms,” in Proceedings of ACM International Conference on Embedded Networked Sensor Systems (SenSys), pp. 251-264, Oct. 2006.
[22] V. Sler, S. Kannan, and K. Daniilidis, “Sampling Based Sensor-Network Deployment,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1780-1785, Oct. 2004.
[23] S. Slijepcevic and M. Potkonjak, “Power Efficient Organization of Wireless Sensor Networks,” in Proceedings of IEEE International Conference on Communications (ICC), vol. 2, pp. 472-476, June 2001.
[24] G. Takahara, K. Xu, and H. Hassanein, “Efficient Coverage Planning for Grid-Based Wireless Sensor Networks,” in Proceedings of IEEE International Conference on Communications (ICC), pp. 3522-3526, June 2007.
[25] G. Wang, G. Cao, P. Berman, and T. La Porta, "Bidding Protocols for Deploying Mobile Sensors," Journal of Mobile Computing, vol. 6, no. 5, pp. 515-528, May 2007.
[26] T. Yan, T. He and J. Stankovic, “Differentiated Surveillance for Sensor Networks,” in Proceedings of ACM Embedded Networked Sensor Systems (SenSys), pp. 51-62, Nov. 2003.
[27] S. Yang, F. Dai, M. Cardei, and J. Wu, "On Connected Multiple Point Coverage in Wireless Sensor Networks," Journal of Wireless Information Networks, vol. 13, no. 4, pp. 289-301, Oct. 2006.
[28] Y. Zhu and L. M. Ni, “Probabilistic Wakeup: Adaptive Duty Cycling for Energy-Efficient Event Detection,” in Proceedings of the ACM International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pp. 360 - 367, Oct. 2007.
[29] Y. Zou and K. Chakrabarty, “Sensor Deployment and Target Localization in Distributed Sensor Networks,” Journal of Embedded Computing Systems, vol. 3, no. 1, pp. 61-91, Feb. 2004.
[30] Y. Zou and K. Chakrabarty, “Uncertainty-Aware and Coverage-Oriented Deployment for Sensor Networks,” Journal of Parallel and Distributed Computing, vol. 64, pp. 788-798, July 2004.
指導教授 許健平、張貴雲
(Jang-Ping Sheu、Guey-Yun Chang)
審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明