博碩士論文 955202045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:35.175.121.230
姓名 賴世章(Shih-Chang Lai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 計算式智慧於資源分配之應用
(Application of Computational Intelligence in Resource Allocation)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 模糊類神經網路為架構之遙測影像分類器設計
★ 複合式群聚演算法★ 身心障礙者輔具之研製
★ 指紋分類器之研究★ 背光影像補償及色彩減量之研究
★ 類神經網路於營利事業所得稅選案之應用★ 一個新的線上學習系統及其於稅務選案上之應用
★ 人眼追蹤系統及其於人機介面之應用★ 結合群體智慧與自我組織映射圖的資料視覺化研究
★ 追瞳系統之研發於身障者之人機介面應用★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用
★ 基因演算法於語音聲紋解攪拌之應用★ 虹膜辨識系統之研究與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這講求高效率的年代,不論所處的環境為何,都一直不斷的強調如何在有限資源下取得最大利益。為了讓資源分配達到最佳效益,本篇論文提出以計算式智慧的方法來解決兩個資源分配的問題,一個是空戰戰機接戰決策的問題,另一為手術室排程規劃的問題。
在數位化戰場時代,透過科技提供迅速且有效的協助,將成為未來致勝關鍵。因此本論文將研究空戰戰場上戰機接戰決策的應用,提供符合最佳優勢的接戰決策策略。在空戰戰機接戰決策問題中,透過取得的空戰態勢,利用多層感知機來分析戰機遭遇時間,並評估戰機接戰時的優勢與設計反制策略的評估函式。透過自我組織特徵映射圖最佳化演算法提供最佳的反制策略,輔助決策者分析與選擇,以提昇戰機接戰決策之效能。
醫院投注許多資金於手術醫療設備上,手術室對一間醫院營運而言,扮演著舉足輕重的角色,好的排程方式會讓手術室的使用效率變高,進而提昇醫院的營運效率。本論文針對手術室排程規劃,提出基因演算法與自我組織特徵映射圖最佳化演算法兩個最佳化演算法,以便從眾多手術室排程的方法中,找出一個讓使用效率達到最佳的排程的方法,增進手術室的使用效率。
摘要(英) In this efficient-oriented generation, making much of pursuing the best benefit with restrictive resources is very important. How to optimize an objective function under precedence restrictions is a very demanding and challenging problem. This study proposes a computational-intelligence-based approach for solving two kinds of resource allocation problems. The first kind resource allocation problem is the aircraft assignment tactic problem and the other one is the operating room scheduling problem.
On modem air warfare, it is important for a commander to quickly and effectively make a proper assignment of our aircrafts to attack enemy aircrafts. The goal of the aircraft assignment tactic problem is to find a proper tactic to assign our aircrafts to meet head-on enemy aircrafts with the objective of maximizing the expected predominance. One important factor in the computation of the expected preponderance value is the prediction of the flying time needed by our aircraft to encounter an enemy aircraft. We train an artificial neural network to predict the flying time based on 11 important features (e.g., the velocities, directions, distance, etc). After the preponderance matrix has been generated, the SOM-based optimization (SOMO) algorithm is adopted to find an assignment which can maximize the expected preponderance value.
Operating rooms play a decisive role on a hospital’s finance because there are usually a lot of expensive instruments in the rooms and a lot of resources are also needed there. Therefore, effective operating room scheduling can reduce costs and ensure efficient use of operating rooms while maintaining a good quality of care. The second part of the thesis is to develop an effective operating rooms scheduling algorithm. This study proposes a genetic-algorithm-based and a SOMO-based operating rooms scheduling algorithms to determine operation schedules which can fully improve the utility rate of operating rooms.
關鍵字(中) ★ 基因演算法
★ 計算式智慧
★ 手術室排程規劃
★ 自我組織特徵映射圖最佳化演算法
★ 空戰戰機接戰決策
關鍵字(英) ★ Operating Room Scheduling
★ Tactic of the Aircraft Assignment
★ SOM-Based Optimization
★ Genetic Algorithm
★ Computational Intelligence
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ix
一、緒論 1
1-1資源分配 1
1-2計算式智慧 1
1-3研究動機與目的 2
1-4論文架構 3
二、相關研究回顧 4
2-1空戰戰機接戰決策 5
2-2手術室排程規劃 7
三、計算式智慧於空戰戰機接戰決策之應用 9
3-1空戰戰機接戰決策演算法 9
3-2評估方式與目標函數 10
3-2-1追擊時間計算 10
3-2-2優勢函數 11
3-2-3目標函數 14
3-3計算式智慧演算法 15
3-3-1粒子群體最佳化演算法 15
3-3-2自我組織特徵映射圖最佳化演算法 17
3-3-3編碼格式 20
3-4模擬結果與比較 21
3-4-1模擬資料建立 21
3-4-2追擊時間預測 22
3-4-3空戰接戰決策 23
3-5結論 27
四、計算式智慧於手術室排程規劃之應用 28
4-1手術室排程規劃流程 28
4-2評估方式與目標函數 28
4-3計算式智慧演算法 30
4-3-1基因演算法於手術室排程規劃 31
4-3-2自我組織特徵映射圖最佳化演算法於手術室排程規劃 35
4-4模擬結果與比較 41
4-4-1模擬資料建立方式 41
4-4-2模擬結果與比較 42
4-5結論 49
五、結論與未來展望 50
5-1結論 50
5-2未來展望 51
六、參考文獻 52
參考文獻 [1] M. V. Calichman, “Creating an Optimal Operating Room,” AORN Journal, vol. 81, no. 3, March 2005.
[2] J. Carlier and E. Pinson, “An Algorithm for Job-Shop Problem,” Management Science, vol. 35, no.2, pp.164-176, Feb. 1989.
[3] H. Cordesman, “The Instant Lessons of the Iraq War,” Center for Strategic and International Studies (CSIS), Washington, DC, Main Report, April 14, 2003, p.21.
[4] D.H. Cropley, "Information and C4ISR Systems", in Proceedings of the Systems Engineering Pragmatic Solutions to Today’s Real World Problems Conference (SE’98), Canberra, Australia, Nov. 4-6, 1998, pp.139-143.
[5] B. Denton, J. Viapiano, and A. Vogl, “Optimization of Surgery Sequencing and Scheduling Decisions under Uncertainty,” Health Care Manage Science, vol. 10, pp.13-24, 2007.
[6] R. H. Epstein and F. Dexter, “Economic Analysis of Linking Operating Room Scheduling and Hospital Material Management Information Systems for Just-in-Time Inventory Control,” Economic and Health Systems Research, vol. 91, pp.337-343, 2000.
[7] J. Gao, M. Gen, and L. Sun, “A Hybrid of Genetic Algorithm and Bottleneck Shifting for Flexible Job Shop Scheduling Problem,” Computers & Industrial Engineering, vol. 45, no. 4, pp.597-613, Dec. 2003.
[8] M. Gen and R. Cheng, Genetic algorithms and engineering design. New York: Wiley, 1997.
[9] A. Guinet and S. Chaabane, “Operating Theatre Planning,” International Journal of Production Economics, vol. 85, pp.69-81, 2003.
[10] K. H. Hanson, “Computer-Assisted Operating Room Scheduling”, International Journal of Production Economics, vol. 99, pp.52-62, 2006.
[11] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches. The MIT Press, 1988.
[12] A. Jebaili, A. B. H. Alouane, and P. Ladet, “Operating rooms scheduling”, International Journal of Production Economics, vol. 99, pp.52-62, 2006.
[13] J. Kennedy, R.C. Eberhart, and Y. Shi, Swarm Intelligence. San Francisco, USA: Morgan Kaufmann Publishers, 2001.
[14] P. J. Kuzdrall, N. K. Kwak, and H. H. Schmitz, “Monte Carlo Simulation of Operating-Room and Recovery-Room Usage,” Operations Research, vol. 22, no. 2, pp.434-440, 1974.
[15] M. Lamiri, J. Dreo, and X. Xie, “Operating Room Planning with Random Surgery Times,” in Proceedings of 3rd Annual IEEE Conference on Automation Science and Engineering Scottsdale, AZ, USA, Sep. 22-25, 2007, pp.521-526.
[16] Z. J. Lee, S. F. Su, and C. Y. Lee, “Efficiently Solving General Weapon-Target Assignment Problem by Genetic Algorithms With Greedy Eugenics”, IEEE Transactions on Systems, Man, and Cybernetics—part B: Cybernetics, vol. 33, no. 1, pp.113-121, Feb. 2003.
[17] K. M. Lee, T. Yamakawa, and K.-M. Lee, “A genetic algorithm for general machine scheduling problems,” in Proceedings of 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, 1998, vol. 2, pp.60-66.
[18] H. Q. Lu, H. J. Zhang, X. J. Zhang, and R. X. Han, “An Improved Genetic Algorithm for Target Assignment Optimization of Naval Fleet Air Defense”, in Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, June 21-23, 2006.
[19] J. Nakasuwan, P. Srithip, and S. Komolavahij, “Class Scheduling Optimization,” Thammasat International Journal Science Tech., vol. 4, no. 2, pp.88-98, July 1999.
[20] E. Nowicki and C. Smitnicki, “A Fast Taboo Search Algorithm for the Job Shop Problem,” Management Science, vol. 42, no. 6, pp.797-813, June 1996.
[21] L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nical, and R.M. Fujimoto, “A Bee Colony Optimization Algorithm to Job Shop Scheduling,” in Proceedings of the 2006 Winter Simulation Conference, Dec. 3-6, 2006, pp.1954-1961.
[22] M. C. Su, T. K. Liu, and H. C. Chang “Improving the self-organizing feature map algorithm using an efficient initialization scheme,” Tamkang Journal of Science and Engineering, vol. 5, no. 1, pp.35-48, March 2002.
[23] M.C. Su, Y. X. Zhao, and J. Lee, “SOM-based Optimization,” in 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, July 25-29, 2004, pp.781-786.
[24] W. Xia and Z. Wu, “An Effective Hybrid Optimization Approach for Multi-Objective Flexible Job-Shop Scheduling Problem,” Computer and Industrial Engineering, vol. 48, pp.409-425, 2005.
[25] Q. F. Xie, J. F. Feng, and Y. B. Zhong, “Decision of Cooperative Airfight and its Realization by Neural Network”, in Proceedings of 2006 6th International Conference on ITS Telecommunications, Chengdu, June 2006, pp.298-301.
[26] N. Zribi, I. Kacem, A. E. Kamel, and P. Born, “Assignment and Scheduling in Flexible Job-Shops by Hierarchical Optimization,” IEEE Transactions on Systems, Man, and Cybernetics-part C: Applications and Reviews, vol. 37, no. 4, pp.652-661, July 2007.
[27] 林素鉁、陳重光、侯東旭,「應用人工智慧演算法於手術室開刀作業排程規劃改善之研究」,醫療資訊雜誌,第16卷,第3期,頁35-48,2005年4月。
[28] 孫宗瀛、李延年、蔡尚錚、陳宏君、周治平,「智慧型CGF模糊決策系統之研究」,中科院94年度學術合作計畫成果發表會,2005年11月24日。
[29] 陳昭宇,「根基於自我組織特徵映射圖為基礎之最佳化演算法之推薦系統」,碩士論文,資訊工程研究所,國立中央大學,2005年7月。
[30] 陳德芳,「建立手術時間預測模式來從事電腦化手術室排程」,碩士論文,醫療機構管理研究所,國立臺灣大學,2006年7月。
[31] 程紅斌、張鳳鳴、張曉豐,「多機協同空戰目標分配算法」,空軍工程大學學報(自然科學版),第6卷,第2期,2005年4月。
[32] 趙于翔,「以群體智慧為基礎的最佳化演算法及其應用」,博士論文,資訊工程研究所,國立中央大學,2007年7月。
[33] 蔣安仁,「開刀房利用最佳化之研究」,碩士論文,醫務管理研究所,國立中山大學,2004年6月。
[34] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則。全華科技圖書股份有限公司,2004年。
指導教授 蘇木春(Mu-Chun Su) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明