博碩士論文 955202058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.227.3.146
姓名 林益有(Yi-you Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 車用無線網路車輛密度偵測方法
(Vehicle Density Detection Scheme in Vehicular Ad Hoc Networks)
相關論文
★ 無線行動隨建即連網路上之廣播與繞徑問題★ 熱門電影的高效能廣播演算法
★ 無線行動隨建即連網路上之媒體存取問題★ 使用功率調整來增加多節點封包無線網路
★ 在無線行動隨建即用網路下Geocast 之設計與實做經驗★ 一個適用於熱門隨選視訊服務之快速排程廣播策略
★ 應用數位浮水印技術於影像之智慧財產權保護與認證★ 在寬頻分碼多重擷取技術上分配及再分配多重正交可變展頻係數碼
★ 無線行動隨建即連網路上之廣播排程協定★ 在無線行動隨建即連網路下支援即時多媒體傳送的媒介存取協定
★ 以樹狀結構為基礎的Scatternet建構協定★ 在無線感應器網路中具有省電機制並且採用對角線路徑的方向性擴散
★ 隨意型無線網路上一個具有能量保存的GRID繞徑協定★ 在無線感應器網路中具有省電機制的傳輸協定
★ 隨意型無線網路上一個具有能量保存以及平衡的繞徑協定★ 環形藍芽網路:一個藍芽通訊網路的新拓樸及其繞徑協定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今許多國家正遭遇嚴重的交通擁塞問題所帶來的巨大經濟損失。解決交通擁塞最常用的方法之ㄧ,就是找出擁塞路段並且告知駕駛員迴避此路段。因此,如何有效地偵測出擁塞路段,是目前重要的研究議題。過去的文獻大部分採用定期地於各路段收集行駛於該路段的車輛的平均速度,以此獲取該路段的交通狀況。其實,除了行駛車輛的平均速度,道路上的車輛密度也能反映出實際的交通狀況:車輛密度越高代表交通量越大,擁塞的可能性愈高。因此本論文提出一簡單有效的方法來偵測道路上的車輛密度:發起式車輛密度偵測 (Origination-based Vehicle Density Detection, OVDD) 方法。此一方法週期性地利用車間通訊協定(Inter-vehicle Communication Protocol)廣播訊息,聽到該訊息的車輛便開始進行回報或報數。由於廣播訊息可接收的範圍是固定的,因此我們利用回報的車輛數目,可求得道路上的車輛密度。此外,本論文提出車輛密度-最高平均車速轉換公式並且利用此轉換公式,將車輛密度轉換成最高平均速度。而模擬結果顯示出,OVDD方法能有效的避免車輛行駛於擁塞路段,與考慮路徑長短不考慮交通狀況的方式比較,可大量縮短行駛的旅途時間。
摘要(英) Nowadays many cities have suffered from traffic congestion problems and sustained serious economic loss. One of the most strategies for solving traffic congestion problem is to provide real time information of congestion roads for drivers. Therefore, identifying congestion roads is an important issue. Most of previous approaches used the average speed of vehicles traveling on a specific road section as a measure of traffic congestion. In this paper, we consider another measure of traffic congestion: vehicle density, number of vehicles per unit area of road. Vehicle density can reflect the actual situation of traffic congestion. Vehicle density is higher (lower) as traffic congestion become more (less) serious. We propose an effective scheme to determine vehicle density on the roads, named Origination-based Vehicle Density Detection (OVDD). In the proposed scheme, vehicles are chosen to broadcast initiated messages through Inter-vehicle Communication. Each vehicle which is receiving the message and traveling on the same road section replies a message to the sender. Since the communication range is fixed, vehicle density could be estimated by (the number of replying vehicles)/(communication diameter). In addition, we propose a formula to transform the vehicle density into maximal average speed on the road. The simulation results show that our OVDD scheme can efficiently avoid the vehicles passing the congested roads and the travel time is shorter than the shortest distance scheme.
關鍵字(中) ★ 智慧型傳輸系統
★ 探測車輛
★ 交通偵測系統
★ 車間通訊系統
★ 車輛密度
關鍵字(英) ★ Intelligent transportation system
★ probe vehicles
★ traffic monitoring system
★ vehicles communications
★ vehicle density
論文目次 第一章 前言............................................................................................... 1
第二章 相關研究 ...................................................................................... 4
第三章 發起式車輛密度偵測方法 .......................................................... 7
3.1 挑選發起車輛與偵測車輛 .......................................................... 8
3.1.1 發起車輛 ............................................................................ 10
3.1.2 偵測車輛 ............................................................................ 12
3.2 車輛密度偵測 ............................................................................. 15
3.3 車輛密度-平均車速轉換 ........................................................... 20
第四章 模擬結果 .................................................................................... 26
第五章 結論............................................................................................. 35
參考文獻 ................................................................................................... 36
參考文獻 [1] INRIX. http://www.inrix.com/, 2006.
[2] IntelliOne. http://www.intellione.com/, 2006.
[3] OnStar. http://www.onstar.com/, 2006.
[4] R. L. Bertini, “Toward Optimal Sensor Density for Improved Freeway Travel Time Estimation and Traveler Information,” in Proceedings of Intelligent Transportation Systems Conference (ITSC 2007), pp. 41-46, 2007.
[5] B. Coifman, “Estimating Travel Times and Vehicle Trajectories on Freeways Using Dual Loop Detectors,” Journal of Transportation Research: Part A, vol 36, no 4, pp. 351-364, 2002.
[6] T. Fujiki, M. Kirimura, T. Umedu and T. Higashino, “Efficient Acquisition of Local Traffic Information Using Inter-Vehicle Communication with Queries,” in Proceedings of Intelligent Transportation Systems Conference (ITSC 2007), pp.241-246, 2007.
[7] M. Kilger, “A Shadow Handler in a Video-Based Real-Time Traffic Monitoring System,” in Proceedings of IEEE Workshop Applications of Computer Vision, pp. 11-18, 1992.
[8] J. M. G. Linnartz, M. Westerman, and R. Hamerslag, “Monitoring the San Francisco Bay Area Freeway Network Using Probe Vehicles and Random Access Radio Channel,” in Technical Report UCB-ITS-PRR-94-23, California Partners for Advanced Transit and Highways (PATH), 1994.
[9] M. G. McNally, J. E. Marca, C. Rindt, and A. M. Koos, “TRACER:In-Vehicle, Gps-Based, Wireless Technology for Traffic Surveillance and Management,” in Technical Report UCB-ITS-PRR-2003-23, California Partners for Advanced Transit and Highways (PATH), 2003.
[10] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, “TrafficView: A Scalable Traffic Monitoring System,” in Proceedings of IEEE International Conference on Mobile Data Management, pp.13-26, 2004.
[11] Z. Qiu , D. Yao, “Kalman Filtering Used in Video-Based Traffic Monitoring System,” Journal of Intelligent Transportation Systems, Volume 10, Issue 1, pp. 15-21, 2006.
[12] D. Schrank and T. Lomax, “The 2007 Urban Mobility Report,” Texas Transportation Institute, 2007.
[13] N. Shibata, T. Terauchi, T. Kitani, K. Yasumoto, M. Ito, and T. Higashino, “A Method for Sharing Traffic Jam Information Using Inter-Vehicle Communication,” in Proceedings of Annual International Conference on Mobile and Ubiquitous Systems, pp. 1-7, 2006.
[14] K. K. Sanwal and J. Walrand, “Vehicles as Probe,” in Technical Report UCB-ITS-PWP-95-11, California Partners for Advanced Transit and Highways (PATH), 1995.
[15] J. Yoon, B. Noble, and M. Liu, “Surface Street Traffic Estimation,” in Proceedings of International conference on Mobile systems, pp. 220-232, 2007.
[16] J. L. Ygnace, C. Drane, Y. B. Yim, and R. Lacvivier, “Travel Time Estimation on the San Francisco Bay Area Network Using Cellular Phones as Probes,” in Technical Report UCB-ITS-PWP-2000-18, California Partners for Advanced Transit and Highways (PATH), 2000.
[17] X. Zhang, J. Hong, S. Fan, Z. Wei, J. Cao, and Y. Ren, “A Novel Real-Time Traffic Information System Based on Wireless Mesh Networks,” in Proceedings of Intelligent Transportation Systems Conference (ITSC 2007), pp. 618-623, 2007.
指導教授 許健平、張貴雲
(Jang-Ping Sheu、Guey-Yun Chang)
審核日期 2008-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明