博碩士論文 955202091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.239.172.52
姓名 黃俊傑(Jyun-jie Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 IM Finder: 透過即時通訊網路線上使用者找尋解答
(IM Finder: Searching Answers via Online Users on Instant Messenger Networks)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法
★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤★ 頻寬感知同儕式3D串流
★ 無線感測網路旋轉指向天線定位法★ 網路虛擬環境多重伺服器動態負載平衡
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近來線上的社交網路工具和服務,在網路上極度的受到歡迎。透過線上社交網路,使用者可以建立個人的線上社群,在其中使用者可以和其他擁有相同興趣的使用者進行互動。即時通訊也可算為社交網路服務的一種,在其中每個使用者可以手動輸入自己的聯絡人清單,並可進行兩人或多人的即時文字訊息傳送、語音交談、以及檔案傳輸等。即時通訊的網路可說是目前最大的數位社交網路之一,其中隱含了大量的線上人力資源。在每天的生活和工作中,我們時常遇到很多問題或是會對未知的事物產生興趣,會想知道答案或是徵詢別人的意見。即使現在人們可以透過搜尋引擎丶論壇討論區、電子郵件丶或向朋友詢問,卻仍然需要花費許多時間去搜尋丶組識或是等待答案回覆。如果可以即時的找到具有足夠知識的線上回答者,將可以降低我們花在瀏覽網頁、等待論壇的回應者或是詢問朋友的時間。在這篇論文中我們介紹一個基於即時通訊網路的答案找尋系統(IM Finder)。此系統可以透過即時通訊聯絡人所構成的社交網路,幫助找尋問題答案的詢問者,即時並精確找尋到具有足夠知識的聯絡人來回答問題。當使用者在找尋問題時,會利用其它使用者成功找到回答者的經驗以達到較好的準確度。系統主要是仰賴過去問過的問題和新問題之間的相似度以及朋友間的信任,提供即時且精確的多跳聯絡人轉傳問題機制,以尋找適當的線上IM使用者即時地回答問題。
摘要(英) The recent online social network tools and services on the Internet are extremely popular. Through the online social networks, users can create personal online communities in which users can interact with each other of the same interest. Instant Messenger (IM) can also be regarded as one of social network services. In IM, each user can build the list of contacts such that two or more persons in the list can initialize instant text messaging, voice chatting and file transfering. The Instant Messenger network is one of the largest digital social networks with a lot of online human resources. In daily life and work, we often face many questions (problems), and/or have interest in something unknown. We would like to know the answers to the questions or consult the suggestions of others. Although search engines, web-based forums, and inquiries to friends via e-mails or instant messenger are all methods we can use today for seeking answers to the questions, in many cases, much time is still spent to search, organize, or wait for responses. If knowledgable online IM user can be handily found to answer questions in real-time, then the time spent to browse webpages, wait for forum responses, or inquire may be dramatically reduced. In this thesis, we propose an answer-finding system (IM Finder) that helps people accurately find knowledgable online users to answer questions in real-time via the social network based on Instant Messenger’’s contacts. Users share successful experiences of finding responders to achieve greater efficiency when seeking answers to questions. System relies on similarity measures between historic and new questions asked, and the trust among mutual friends, to provide timely and accurate mechanism of multi-hop question relay through contacts to find appropriate IM online users to answer questions interactively.
關鍵字(中) ★ 同儕式網路計算
★ 社交網路
★ 即時通訊
關鍵字(英) ★ Peer-to-Peer Computing
★ Instant Messenger
★ Social Network
論文目次 Chinese abstract ....................................................................................................... i
Abstract ..................................................................................................................... ii
目錄 ........................................................................................................................... iii
圖目錄 ........................................................................................................................ v
一、緒論 .................................................................................................................... 1
二、相關背景與研究 ................................................................................................ 4
 2.1 小世界即時通訊(SWIM)與同伴發現者(BuddyFinder) ............................. 4
 2.2 社會網路搜尋 ............................................................................................... 6
 2.3 同儕式網路搜尋............................................................................................ 7
 2.4 結合社會網路概念的同儕式網路搜尋 ....................................................... 9
三、系統架構與設計 .............................................................................................. 11
 3.1 系統架構 ..................................................................................................... 12
 3.2 演算法描述 ................................................................................................. 13
 3.3 執行流程 ..................................................................................................... 16
   3.3.1 問題比對 .......................................................................................... 16
   3.3.2 推薦 .................................................................................................. 16
   3.3.3 排序 .................................................................................................. 17
   3.3.4 回饋收集 .......................................................................................... 17
   3.3.5 加強 .................................................................................................. 17
四、系統實作 ........................................................................................................... 19
 4.1 開發環境 ..................................................................................................... 19
 4.2 系統展示 ..................................................................................................... 20
 4.3 系統協定 ..................................................................................................... 25
五、討論 ................................................................................................................... 27
 5.1 議題一 ......................................................................................................... 28
 5.2 議題二 ......................................................................................................... 28
六、結論 ................................................................................................................... 30
參考文獻 ................................................................................................................... 31
參考文獻 [1] http://tw.msn.com/.
[2] http://www.google.com/talk/intl/zh-TW/.
[3] http://www.aol.com/main.adp?adp=1.
[4] http://tw.knowledge.yahoo.com/.
[5] http://www.gnutella.com.
[6] http://en.wikipedia.org/wiki/Pidgin.
[7] http://www.cygwin.com/.
[8] Facebook. http://www.facebook.com, 2007.
[9] Myspace. http://www.myspace.com, 2007.
[10] Pidgin. http://pidgin.im/, 2007.
[11] L.A. Adamic and Adar. E. How to search a social network. In Social Networks,2005.
[12] B.Cohen. Incentives build robustness in bittorrent. In Economics of Peer-to-Peer
 Systems, 2003.
[13] B.Yang and H.Garcia-Molina. Improving search in peer-to-peer networks. In
  Distributed Computing systems, 2002.
[14] E.Cohen K.Li and S C.Lv, P.Cao. Search and replication in unstructured peer-to-
  peer networks. In International Conference on Supercomputing, 2002.
[15] D.Tsoumakos and N.Roussopoulos. Adaptive probabilistic search (aps) for peer-
  to-peer networks. In Peer-to-Peer Computing, 2003.
[16] R. Farmer. Instant messaging – collaborative tool or educator’s nightmare!
   In The North American Web-based Learning Conference, 2003.
[17] L. Yenta Foner. A multi-agent, referral based matchmaking system. In
  International Conference on Autonomous Agents, 1997.
[18] M Van Alstyne J Zhang. Swim: fostering social network based information search.
  In Conference on Human Factors in Computing Systems, 2004.
[19] A Goncalves C Denham J Zhu, M Eisenstadt. Buddyfinder-corder: Leveraging social
  networks for matchmaking by opportunistic discovery. In Semantic Web Conference,
  2005.
[20] S.Mackin. L.Liu, N.Antonopoulos. Social peer-to-peer for resource discovery. In
  Parallel, Distributed and Network-Based Processing, 2007.
[21] D. W. McDonald and M.S Ackerman. Expertise recommender: A flexible
  recommendation architecture. In Computer-Supported Cooperative Work, 2000.
[22] Stanley Milgram. The small world problem. Psychology Today., 1(1):60–67, 1967.
[23] G.A. Miller. Wordnet: A lexical database for english. In Communications of the ACM,
  1995.
[24] M.Stokes. Gnutella2 specifications part one:
  http://www.gnutella2.com/gnutella2 search.htm. 2002.
[25] Frederic Dang Ngoc, Joaquin Keller, and Gwendal Simon. Maay: A decentralized
  personalized search system. In International Symposium on Applications and the
  Internet, 2006.
[26] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J.Yang, A. Iosup, D.H.J. Epema,
  M. Reinders, M. van Steen, and H.J. Sips. Tribler: A social-based peer-to-peer
  system. In The 5th International Workshop on Peer-to-Peer Systems, 2006.
[27] E.Cohen K.Li Q.Lv, P.Cao and S.Shenker. Search and replication in unstructured
  peer-to-peer networks. In 16th ACM International Conference on Supercomputing,
  2002.
[28] X Zhang H Wang. S Jiang, L Guo. Lightflood: Minimizing redundant messages and
  maximizing the scope of peer-to-peer search. IEEE TRANSACTIONS ON
  PARALLEL AND DISTRIBUTED SYSTEMS.,19(5):601–614, 2008.
[29] S.Daswani and A.Fisk. Gnutella udp extension for scalable searches (guess) v0.1.
  2002.
[30] D.Gunopulos V.Kalogeraki and D.Zeinalipour-Yazti. A local search mechanism for
  peer-to-peer networks. In international conference on Information and knowledge
  management, 2002.
[31] Faust K. Iacobucci D Wasserman, S. and M. Granovetter. Social network analysis:
  Methods and applications. 1994.
[32] Jones Q. Terveen L Whittaker, S. Contact management: Identifying contacts to
  support long-term communication. In ACM Conference on Computer Supported
  Cooperative Work, 2002.
[33] B. Yu and M.P. Singh. Searching social networks. In Second International Joint
  Conference on Autonomous Agents and Multi-Agent Systems, 2003.
[34] Zuhair A. Bandar James D. O’Shea Keeley Crockett Yuhua Li, David McLean.
  Sentence similarity based on semantic nets and corpus statistics. IEEE Transactions
  on Knowledge and Data Engineering., 18(8):1138–1150, 2006.
指導教授 江振瑞(Jehn-ruey Jiang) 審核日期 2009-2-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明