博碩士論文 955203032 詳細資訊


姓名 古士軒(Shi-Shan Gu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 十六個訊號點之非同調區塊編碼調變
(Noncoherent Block-Coded Modulation with Sixteen Signal Points)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 兩種非同調區塊編碼架構,使用八點相位鍵移(8PSK)的非同調區塊編碼及八點扭轉振幅相位鍵移(8TAPSK)的非同調區塊編碼已經被提出了。然而,上述只用八個訊號點的這兩種架構,其資料傳輸率不夠高。在此篇論文中,我們探討使用十六個訊號點的非同調區塊編碼架構,包含了十六點的TAPSK及十六點的正交振福調變(QAM)。十六點的QAM被廣泛的使用於同調通訊系統上,我們推導出使用十六點QAM的區塊編碼之最小非同調距離,並且根據它來提出一個新的非同調區塊編碼架構。對於不同區塊長度以及不同的構成碼,我們比較使用十六點QAM之非同調區塊編碼及使用十六點TAPSK之非同調區塊編碼的非同調距離分析和錯誤效能。
摘要(英) Two noncoherent block coding schemes, noncoherent block-coded 8PSK (NBC-8PSK) and noncoherent block-coded Twisted amplitude and phase shift keying using eight signal points(NBC-8TAPSK) were proposed, respectively. However, the data rate is not high since only eight signal points are used in both schemes. In this thesis, we discuss noncoherent block coding scheme with sixteen signal points, including 16TAPSK and quadrature amplitude modulation (16QAM). 16QAM is widely used for coherent communication. We derived the minimum noncoherent distance for block-coded 16QAM. Accordingly, we propose a new noncoherent block coding scheme. For different block length and code rate, NBC-16TAPSK and NBC-16QAM are compared by distance analysis and computer simulations.
關鍵字(中) ★ 非同調檢測器
★ 區塊編碼調變
★ 正交振幅調變
關鍵字(英) ★ noncoherent detection
★ quadrature amplitude modulation(QAM)
★ block-coded modulation
論文目次 第一章 緒論 1
第二章 回顧 3
2.1 通道模型及非同調接收器 3
2.2 非同調區塊編碼8TAPSK之回顧 5
2.2.1 訊號星座圖與非同調距離 5
2.2.2 編碼架構 7
2.2.3 解碼演算法 9
第三章 十六個訊號點的非同調區塊編碼調變 11
3.1 簡介 11
3.1.1 16QAM訊號星座圖 11
3.1.2 16TAPSK訊號星座圖與內外圈比 12
3.2 非同調距離分析 13
3.2.1 區塊編碼16QAM 13
3.2.2 非同調區塊編碼16QAM之定義 30
3.2.3 16QAM的功率正規化 61
3.2.4 非同調區塊編碼16TAPSK 62
3.3 編碼架構 64
第四章 模擬結果 65
第五章 結論 78
參考文獻 79
參考文獻 [1] D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48, pp. 651-668, Mar. 2002.
[2] R. Y. Wei, T. C. Sue, H. H. Wang, C.-S. Wang, “Noncoherent Block-Coded QAM,” IEEE International Conference on Communications (ICC), pp.24-28 ,June 2007
[3] R. Knopp and H. Leib, “M-ary coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
[4] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
[5] R. Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 53, pp. 978-986, June 2005.
[6] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” in Proc. IEEE International Conference on Communications (ICC), Istanbul, June 2006.
[7] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
[8] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
[9] T. Takata, S. Ujita, T. Kasami and S. Lin, “Multistage decoding of multilevel block MPSK modulation codes and its performance analysis,” IEEE Trans. Inform. Theory, vol. 39, pp. 1204-1218, July 1993.
[10] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Trans. Inform. Theory, vol. 23, pp. 371-376, May. 1977.
[11] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: heoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp. 1361-1391, July 1999.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2008-7-23

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡