博碩士論文 955301015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.147.29.160
姓名 邱文政(Wen-Cheng Chiu)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 印刷共面波導饋入式多頻帶與超寬頻天線設計
(PRINTED COPLANAR WAVEGUIDE-FED MULTI-BAND AND ULTRA-WIDEBAND ANTENNA DESIGNS)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究
★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究
★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製
★ 應用於K / V 頻段低功耗混頻器之研製★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究
★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製
★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Chinese Abstract (中文摘要)
現今行動裝置的使用,發展非常蓬勃,因此天線設計扮演著重要的角色。本論文是針對兩個用途不同的印刷共面波導饋入式天線,提出探討:一個是多頻段區塊的應用;另一個則是用於超寬頻的區塊。
這兩個天線的設計均使用印刷電路板與共面波導饋入式結構,其印刷電路板設計可以降低製造成本,又因其輻射天線主體和接地面都印刷在基板上的同一側,所以又可降低製造之複雜性。天線設計的參數影響之研究是透過使用Ansoft HFSS來模擬並利用量測阻抗頻寬和輻射場型來驗證。
印刷共面波導饋入式多頻段天線設計,尺寸為30毫米×35毫米×1.6毫米的單層FR4基板上使用L形縫與倒L形槽孔。其阻抗頻寬量測結果為2.335–2.579 GHz和2.9125–5.9 GHz,可應用於2.4/5.2/5.8-GHz (2.4–2.4835 GHz/5.15–5.35 GHz/5.725–5.825 GHz)無線區域網路(WLAN)和3.5-GHz(3.3–3.8 GHz)的微波存取全球互通(WiMAX)等多頻段。
印刷共面波導饋入式超寬頻天線設計,使用兩個非對稱共面接地面,其功能可增加頻寬。天線設計具有簡單的架構並印刷在尺寸為30毫米×40毫米×1.6毫米的單層FR4基板上。其量測結果具有非常寬的阻抗頻寬2.85–11.5 GHz (4.035:1頻寬或 115.3%),符合美國聯邦通信委員會3.1–10.6 GHz超寬頻帶的規範。
摘要(英) English Abstract
The antenna design plays an important role as the usage of mobile devices nowadays has become booming. This thesis proposes two printed coplanar waveguide (CPW)-fed antennas: one is for multi-band applications; the other is for ultra-wideband (UWB) applications.
The two antennas are designed on printed circuit boards (PCBs) with the CPW-fed structure. Using PCBs can lower the manufacturing cost. Both a radiating element and ground planes printed on the same side of the substrate can decrease the fabrication complexity. The study of parametric effects on antenna designs is performed by using Ansoft’s High Frequency Structure Simulator (HFSS), and then followed by measuring impedance bandwidth and radiation patterns for verifications.
One is a printed CPW-fed multi-band antenna design with an L-shaped slit and an inverted L-shaped slot designed on the radiating element. The proposed antenna is printed on a single-layer FR4 substrate with the volume 30 mm × 35 mm × 1.6 mm. The measured impedance bandwidth of the proposed antenna is 2.335–2.579 GHz and 2.9125–5.9 GHz, which is capable of the multi-band operations at 2.4/5.2/5.8-GHz (2.4–2.4835 GHz/5.15–5.35 GHz/5. 725–5.825 GHz) for Wireless Local Area Network (WLAN) and 3.5-GHz (3.3–3.8 GHz) for Worldwide Interoperability for Microwave Access (WiMAX).
The other is a printed CPW-fed UWB antenna design with two asymmetric coplanar ground planes. The CPW-fed asymmetric ground planes are adopted in the proposed antenna to broaden the impedance bandwidth. The proposed antenna has a simple configuration and is printed on a single-layer FR4 substrate with the volume 30 mm × 40 mm × 1.6 mm. The measured impedance bandwidth of the proposed UWB antenna is capable of a very wide bandwidth 2.85–11.5 GHz (4.035:1 bandwidth or 115.3%), which completely covers the UWB band of 3.1–10.6 GHz regulated by FCC for communications.
關鍵字(中) ★ 天線設計
★ 印刷電路板
★ 共面波導
★ 多頻帶
★ 超寬頻
關鍵字(英) ★ antenna design
★ printed circuit board (PCB)
★ coplanar waveguide (CPW)
★ multi-band
★ ultra-wideband (UWB)
論文目次 Table of Contents
Chinese Abstract (中文摘要) I
English Abstract II
Acknowledgements IV
Table of Contents V
List of Figures VII
List of Tables XIV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Overview 1
1.3 Organization 1
Chapter 2 Overview of Printed Antenna Design, Fabrication and Measurement 3
2.1 Overview 3
2.2 Antenna Fundamental Parameters 3
2.3 Antenna Design Flow 4
2.4 Printed Antenna Fabrication 6
2.5 Antenna Measurement 13
Chapter 3 Design of Printed CPW-Fed Antenna with an L-Shaped Slit and an Inverted L-Shaped Slot for Multi-Band Applications 16
3.1 Overview 16
3.1.1 WLAN Applications Overview 16
3.1.2 WiMAX Applications Overview 18
3.1.3 Printed CPW-Fed Multi-Band Antenna Literature Overview 18
3.2 Antenna Design 19
3.2.1 Antenna Configuration 19
3.2.2 Parametric Study 22
3.3 Experimental Results 23
3.3.1 Impedance Bandwidth 24
3.3.2 Simulated Current Distribution 24
3.3.3 Radiation Characteristics 26
3.3.4 Simulated Gain 40
3.4 Discussion 40
Chapter 4 Design of Printed CPW-Fed Antenna with Asymmetric Coplanar Ground Planes for UWB Applications 42
4.1 Overview 42
4.1.1 UWB Technology Overview 42
4.1.2 Printed CPW-Fed UWB Antenna Literature Overview 43
4.2 Antenna Design 45
4.2.1 Antenna Configuration 45
4.2.2 Parametric Study 47
4.3 Experimental Results 51
4.3.1 Impedance Bandwidth 51
4.3.2 Simulated Current Distribution 52
4.3.3 Radiation Characteristics 53
4.3.4 Simulated Gain 67
4.3.5 Simulated Input Impedance 67
4.4 Discussion 68
Chapter 5 Conclusion 70
5.1 Summary 70
5.2 Future Work 70
References 71
參考文獻 References
[1] Constantine A. Balanis, “Antenna theory: analysis and design, Third Edition,” John Wiley and Sons Inc., Hoboken, USA, 2005.
[2] 陳華明,天線設計-HFSS模擬應用(附專案執行檔光碟),全華圖書,台灣,2010
[3] Ansoft, “Getting started with HFSS v9 for antenna design,” Pittsburgh, PA, U.S.A., Oct. 2003.
[4] Agilent Technologies, Inc. Application Note 5990-8856EN, “Testing new-generation wireless LAN,” May 22, 2011.
[5] IEEE, “IEEE standard for local and metropolitan area networks; part II: Wireless LAN Medium Access Control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 2.4 GHz band, IEEE Std. 802.11b-1999,” Sep. 1999.
[6] IEEE, “IEEE standard for local and metropolitan area networks; part II: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999,” Sep. 1999.
[7] Intel® WiMAX technology, 2004, http://www.intel.com/technology/wimax/index.htm
[8] R. A. Bhatti, Y. T. Im, and S. O. Park, “Compact PIFA for mobile terminals supporting multiple cellular and non-cellular standards,” IEEE Trans. Antennas Propag., Vol. 57, No. 9, pp. 2534–2540, Sep. 2009.
[9] Xin Sun, Gang Zeng, Hong-Chun Yang, and Yang Li, “A Compact quadband CPW-Fed slot antenna for M-WiMAX/WLAN applications,” IEEE Antennas and Wireless Propagation Letters, Vol. 11, pp. 395‒398, Apr. 2012.
[10] Yang Zhang, Xin Sun, Jian-xing Wu, Hong-chun Yang, and Gang Ze, “Design of a CPW-Fed compact slot antenna for WIMAX/WLAN applications,” Computational Problem-Solving (ICCP), 2011 International Conference on, pp. 246–248, Oct. 2011.
[11] Deepti Das Krishna, M. Gopikrishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, “CPW-Fed Koch fractal slot antenna for WLAN/WiMAX applications,” IEEE Antennas and Wireless Propagation Letters, Vol. 7, pp. 389‒392, Nov. 2008.
[12] Chien-Jen Wang, Jin-Jei Lee, and Rey-Bin Huang, “Experimental studies of a miniaturized CPW-fed slot antenna with the dual-frequency operation,” IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, pp. 151‒154, 2003.
[13] P. Thiruvalar Selvan, and S. Raghavan, “A novel compact CPW-fed octagan shaped slot antenna for WLAN application,” Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), 2011 2nd International Conference on, pp. 1–4, Feb. 28–Mar. 3, 2011.
[14] M. Roshanaei, and R. Faraji-Dana, “A new quad-band CPW-fed stacked antenna for wireless LAN applications,” Electromagnetics in Advanced Applications, 2007. ICEAA 2007. International Conference on, pp. 535–538, Sep. 2007.
[15] Chao Deng, Lu Li, Qingge Gong, Dianfu Zhan, and Yongxing Zou, “Planar printed monopole antennas for ultra-wideband/multi-band wireless systems,” Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE), 2011 IEEE 4th International Symposium on, pp. 1–4, Nov. 2011.
[16] FCC NEWS by First Report and Order (FCC 02–48), Feb. 14 2002. FCC News release, New public safety applications and broadband internet access among uses envisioned by FCC authorization of ultra wideband technology.
[17] Yi-Cheng Lin, and Kuan-Jung Hung, “Compact ultrawideband rectangular aperture antenna and band-notched designs,” IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, pp. 3075‒3081, Nov. 2006.
[18] Kin-Lu Wong, “Compact and broadband microstrip antennas,” John Wiley and Sons, Inc., NY, USA, 2001.
[19] Z.J. Tang, J. Zhan, and H.L. Liu, “Compact CPW-fed antenna with two asymmetric U-shaped strips for UWB communications,” IEEE Electron. Lett., Vol. 48, No. 14, pp. 810‒812, Jul. 2012.
[20] J. William, and R. Nakkeeran, “Development of CPW-fed UWB printed slot antenna,” Communications (NCC), 2010 National Conference on, pp. 1–5, Jan. 2010.
[21] T.A. Denidni, and M.A. Habib, “Broadband printed CPW-fed circular slot antenna,” IEEE Electron. Lett., Vol. 42, No. 3, pp. 135–136, 2006.
[22] V. Shrivastava, and Y. Ranga, “Ultra wide band CPW-fed printed pentagonal antenna with modified ground plane for UWB Applications,” Wireless, Mobile and Multimedia Networks, 2008. IET International Conference on, pp. l–2, Jan. 2008.
[23] Ansoft High Frequency Structure Simulator (HFSS), Pittsburgh, PA, U.S.A.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2013-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明