博碩士論文 955302004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.94.202.172
姓名 張泳鉑(YUNG-PO CHANG)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 類神經網路於中央處理器風扇轉速最佳化與散熱片狀態偵測之應用
(Application of Neural Networks in CPU Fan Speed Optimization and Heat Sink Status Detection)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 模糊類神經網路為架構之遙測影像分類器設計
★ 複合式群聚演算法★ 身心障礙者輔具之研製
★ 指紋分類器之研究★ 背光影像補償及色彩減量之研究
★ 類神經網路於營利事業所得稅選案之應用★ 一個新的線上學習系統及其於稅務選案上之應用
★ 人眼追蹤系統及其於人機介面之應用★ 結合群體智慧與自我組織映射圖的資料視覺化研究
★ 追瞳系統之研發於身障者之人機介面應用★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用
★ 基因演算法於語音聲紋解攪拌之應用★ 虹膜辨識系統之研究與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的日新月異,中央處理器(CPU)的頻率與運算能力也越來越快,相對的,我們必須面對的是CPU在高速運算時所產生的高溫與散熱問題。一般而言,目前市面上常見的CPU散熱方式有以下兩種:(以散熱器的型態來區分)(1)主動式散熱器: 由一個脈波寬度調變(PWM)風扇與散熱片(Heat Sink)組成,並由風扇轉速來控制流過散熱片的氣流強弱;(2)被動式散熱器: 體積較大且需搭配主機機殼內獨立之風扇與導風罩一起使用,方可達到散熱的效果。由於成本與便利性的考量,一般個人或套裝PC皆是以主動式散熱器為主;被動式散熱器則是多用於伺服器等具多個發熱源的系統。

由於主動式散熱器是由一個PWM風扇與散熱片所組成,為了找出CPU最佳的散熱參數(散熱片材質、結構與風扇轉速等),一般主機板廠商在產品設計階段,皆需投入大量人力、時間與各種專業的設備,進行多次的實驗,以保證產品的散熱效能可以符合CPU的規範。然而,目前市面上的個人電腦(PC)或套裝電腦,為了支援市面上種類繁複的CPU並縮短產品上市的時間,主機板廠商通常會以能支援的CPU中功率最大者為其散熱方案的設計目標,如此雖然可以保證產品的散熱效能足以符合各種CPU的規範,但,如果使用者使用的是功率較低的CPU時,則在散熱片與風扇轉速不變的狀況下,將會產生Over-Cooling的問題,造成能源不必要的浪費與較高的噪音值。

本論文提出一個CPU風扇轉速最佳化與散熱片狀況偵測的方法,利用類神經網路之放射狀基底函數網路來建立電腦內CPU溫度的模型,並利用此一模型搭配CPU的Thermal Profile,來離線找出另一組可令CPU溫度維持在規範範圍內的風扇轉速資料,並利用此一資料來訓練另一個類神經網路控制器,從而實做一個CPU風扇轉速控制軟體。而原本用以建立電腦內CPU溫度模型的類神經網路,則可用來做為散熱器狀態偵測的用途,讓使用者無需打開機殼便可確認散熱器的狀態。

經實驗證明,兩顆不同散熱設計功率(TDP)的CPU在兩部不同品牌的系統上,以本論文實作之CPU風扇轉速控制軟體來控制CPU風扇,可以比系統上原有的風扇轉速控制機制,平均降低18.65% (ASUS+E4600)、56.03% (ASUS+X3220)、45.81% (GIGABYTE+E4600)、1.81% (GIGABYTE+X3220)的風扇轉速(風扇能源消耗與風扇噪音值也相對地下降)。而散熱器狀態偵測在不加遮罩的狀況下平均準確度可達98.20% (ASUS+E4600)、94.71% (ASUS+X3220)、98.24% (GIGABYTE+E4600)、98.40% (GIGABYTE+ X3220)。
摘要(英) With technology’s revolution and innovation, CPU frequency and computing capability become more and more higher and faster. But, at same time, we also have to face the problem of high temperature and heat dissipation that generated by CPU. Generally, there are two common solutions for CPU heat dissipation (based on the types of heatsinks): (1) Active Heatsinks: Consists of one PWM fan and one heatsinks, and control the airflow of heatsinks via variable PWM fan speed; (2) Passive Heatsinks: Larger than Active Heatsinks, and require in-depth knowledge of the airflow and air-ducting techniques to manage the airflow in the chassis. Consider cost and convenience, usually, Active Heatsinks solution will be adopted on the most PC or own-brand computer, and Passive Heatsink is mainly used on the system (ex. Server) with multi-heat sources.

Since Active Heatsinks consist of two parts - PWM fan and heatsinks, motherboard vendors usually have to spend lots of man-power、time and special equipments in their experiments for finding out the best thermal solution (like material and structure of heatsinks, corresponding fan speed…etc) during product design phrase and make sure the performance of that thermal solution can meet CPU thermal specifications. However, in order to support all CPU(s) that in CPU support list and shorten the lead-time, the mother board vendors often adopt a strategy - design the thermal solution of their products to fulfill the CPU with maximum power in the CPU support list. This strategy guarantees their products are able to meet every CPU’s thermal specifications always but it could cause Over-Cooling problem. Unnecessary power consumption and higher noises could be caused.

In this thesis, the methods of CPU Fan Speed Optimization and Heat Sink Status Detection will be presented. Two RBFN (Radial Basis Function Networks) will be used. The first RBFN (Radial Basis Function Networks) will be used for modeling a CPU thermal model with the CPU thermal data we collect. And, a set of data for training second RBFN will be generated by using the combination of the first RBFN and CPU Thermal Profile. After second RBFN training finish, it will be integrated into a CPU fan speed control application program and used to control CPU fan speed continually and smartly under OS (operating system). And, the first RBFN will be used for detecting the CPU heatsinks status. End-user will not need to open the chassis for checking the CPU heatsinks status anymore.

To demonstrate the performance of the proposed methods, two CPU(s) with different TDP have been tested on two different systems with RBFN fan speed controller and original thermal solutions separately. And, the test result shows the RBFN fan speed controller can reduce 18.65% (ASUS+E4600)、56.03% (ASUS+X3220)、45.81% (GIGABYTE+E4600)、1.81% (GIGABYTE+X3220) fan speed (on average) than original thermal solutions(fan power consumption and fan noise can be lowered too) . And, the average predictability of RBFN Heat Sink Status Detector are 98.20% (ASUS+E4600)、94.71% (ASUS+X3220)、98.24% (GIGABYTE+E4600)、98.40% (GIGABYTE+X3220) without fan mask.
關鍵字(中) ★ 主動式散熱器
★ 脈波寬度調變
★ 風扇轉速控制
★ Over-Cooling
★ 放射狀基底函數網路
★ Thermal Profile
★ TDP
★ 散熱器狀態偵測
關鍵字(英) ★ Active Heatsinks
★ PWM
★ Fan Speed Control
★ Over-Cooling
★ RBFN
★ Thermal Profile
★ TDP
★ Heatsinks Status Detection
論文目次 中文摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 2
第二章 相關技術與研究 4
2-1 影響CPU溫度的因素 4
2-2 CPU溫度量測 6
2-3 現行的CPU溫度控制技術 7
2-3-1 CPU內部溫度控制機制 8
2-3-2 CPU外部溫度控制機制 11
2-4 CPU散熱解決方案(Thermal Solution)設計流程 15
2-4-1 相關名詞解釋 15
2-4-2 散熱方案設計流程概述 19
2-5 CPU風扇轉速控制與散熱片狀態偵測相關文獻 19
第三章 CPU風扇轉速控制器與散熱片狀態偵測器 21
3-1 系統架構 21
3-1-1 硬體架構 22
3-1-2 軟體架構 23
3-1-3 操作介面說明 24
3-2 放射基底函數網路 27
3-2-1 網路架構 28
3-2-2 正交最小平方學習演算法 29
3-3 Matlab動態連結資料庫 34
第四章 實驗設計與結果 36
4-1 研究方法與步驟 36
4-1-1資料擷取 37
4-1-1-1 訓練散熱器狀態偵測器所需資料 40
4-1-1-2 訓練CPU風扇轉速控制器所需資料 40
4-1-2 訓練資料前置處理 41
4-1-3 類神經網路訓練 43
4-1-4 辨識率與標準差 44
4-1-5 實驗設計 45
4-1-5-1 CPU散熱片遮蔽率 45
4-1-5-2 CPU風扇轉速測試 46
4-2 實驗結果 46
4-2-1 類神經網路辨識率 46
4-2-1-1 CPU溫度資料辨識率 46
4-2-1-2 CPU風扇轉速資料辨識率 47
4-2-2 CPU風扇轉速控制器與原風扇轉速控制系統之比較 48
4-2-2-1 平均CPU效能 49
4-2-2-2 平均CPU溫度 49
4-2-2-3 平均CPU風扇轉速 50
4-2-2-4 實驗結果分析與說明 50
4-2-3 散熱器狀態偵測器 51
4-2-3-1 平均準確度 51
4-2-3-2 實驗結果分析與說明 52
第五章 結論與未來展望 53
5-1 研究結論 53
5-2 未來展望 54
參考文獻 56
附錄一、ASUS P5VD2-MX主機板規格表 60
附錄二、GIGABYTE GA-P31-ES3G主機板規格表 62
附錄三、ASUS P5VD2-MX CPU Support List 64
附錄四、GIGABYTE GA-P31-ES3G CPU Support List 66
參考文獻 [1] F. C. Duh,“A Study on Heat Dissipative Performance for CPU,” Journal of Advanced Engineering Vol. 5, No. 1, pp. 69-75, January 2010
[2] 中華科技大學電子工程系暨研究所. [Online] Available: http://ee.cust.edu.tw/V2/91-93各類講座資料/97各類講座/社區服務971220-980118/電腦保養.ppt August 23, 2012 [date accessed]
[3] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,修訂三版,全華科技圖書公司,台北市,民國九十三年。
[4] Intel Corporation, Intel Core 2 Extreme Processor X6800 and Intel Core 2 Duo Desktop Processor E6000 and E4000 Series Electrical, Mechanical, and Thermal Specifications, Rev 2.3, March 2008.
[5] Intel Corporation, Quad-Core Intel Xeon Processor 3200 Series datasheet., January 2007.
[6] Intel Core i7-800 and i5-700 Desktop Processor Series, Intel Core i5-600, i3-500 Desktop Processor Series, Intel Pentium Desktop Processor 6000 Series and LGA1156 Socket Thermal/Mechanical Specifications and Design Guidelines, Rev 2.3, June 2012.
[7] 自動化在線Autooo.net. [Online] Available: http://www.autooo.net/utf8-classid123-id30354.html August 31, 2012 [date accessed]
[8] 自動化在線Autooo.net. [Online] Available: http://www.autooo.net/utf8-classid123-id54355.html August 31, 2012 [date accessed]
[9] Quad-Core Intel Xeon Processor 3200 Series Thermal Mechanical Design Guidelines(TMDG), Revision 1.0, January 2007.
[10] Intel Core2 Duo Processor, Intel Pentium Dual Core Processor, and Intel Celeron Dual-Core Processor Thermal and Mechanical Design Guidelines, June 2009.
[11] L. A. Nelson, K. S. Sekhon, and J. E. Fritz, “Direct Heat Pipe Cooling of Semiconductor Devices,” Proc. Int. Heat Pipe Conf., 3rd., pp. 373-376, 1978.
[12] Tom’s Hardware. [Online] Available: http://www.tomshardware.com/reviews/core-duo-notebooks-trade-battery-life-quicker-response,1206-7.html September 1, 2012 [date accessed]
[13] C. Gonzales and H. M. Wang, “Thermal Design Considerations for Embedded Applications,” White Paper, December 2008.
[14] Intel Corp. [Online] Available: http://www.intel.com/support/processors/xeon5k/sb/CS-030328.htm September 2, 2012 [date accessed]
[15] Intel Corp. [Online] Available: http://www.intel.com/cd/channel/reseller/apac/zht/products/desktop/processor/processors/core2extreme/tech/311044.htm September 2, 2012 [date accessed]
[16] 廖瑋智,「電腦的最佳散熱模式之效益分析」,國立成功大學工程科學系碩士班碩士論文,民國九十七年。
[17] 陳律安,「電腦水冷散熱系統之效益研究」,國立成功大學工程科學系碩士班碩士論文,民國九十五年。
[18] S. Shuler, “Thermal management: understanding how to incorporate effective thermal strategies into overall portable electronic design for better performance,” Materials and Design, Vol. 21, pp.39-44, 2000.
[19] 4-Wire Pulse Width Modulation(PWM) Controlled Fans Specification, Revision 1.3, September 2005.
[20] IT8712F Environment Control - Low Pin Count Input / Output Preliminary Specification, Version 0.81.
[21] IT8716F Environment Control - Low Pin Count Input / Output Preliminary Specification, Version 0.3.
[22] S. Huck, “Measuring Processor Power: TDP vs. ACP,” White Paper, Revision 1.1, April 2011.
[23] J. M. Ho and Y. L. Lin,“The Study of Integrating Pulse Width Modulation and Temperature Sensing Control to DC FAN Driving,” Journal of Advanced Engineering Vol. 4, No. 4, pp. 379-384, October 2009.
[24] 高家聲,「智慧型電腦散熱風扇控制系統」,私立淡江大學電機工程學系碩士班碩士論文,民國九十七年。
[25] 王暉賓,「伺服系統風扇節能策略之設計與實作」,國立台北科技大學電資碩士班碩士論文,民國九十七年。
[26] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks,” IEEE Transactions on Neural Networks, Vol. 2, no. 2, pp. 302-309, March 1991
[27] 林楨喨,「以線性迴歸的技巧加強RBF類神經網路的引申能力」,國立中山大學機械工程學系碩士班碩士論文,民國九十年。
[28] Y. Jiang, Y. Bai, and Y. Zhu, “Recognizing the Main Steam Temperature System using Genetic Programming with Automatically Defined Functions,” in 2007 IEEE International Conference on Automation and Logistics, pp. 745-748, August 2007
[29] H. Fu, H. Wang, and W. Yang,“Application of Mixed Programming between Matlab and Visual C++ on Circles Detection,” in IHMSC ’09 International Conference on Intelligent Human-Machine Systems and Cybernetics, Vol. 2, pp. 53-57, August 2009
[30] L. Hong and J. Cai, “The application guide of mixed programming between MATLAB and other programming languages,”in the 2nd International Conference on Computer and Automation Engineering (ICCAE), Vol. 3, pp. 185-189, February 2010
指導教授 蘇木春 審核日期 2012-12-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明