博碩士論文 955303020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.144.187.103
姓名 葉宗翰(Zong-hen Yen)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 發展軟體演算實現線性調頻連續波雷達測距系統之設計
(Development of the Software Algorithms to Design the Range-Finding System based on Linear Frequency-Modulated Continuous-Wave Radar)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 近場通訊之智慧倉儲管理
★ 在Android 平台上實現NFC 室內定位★ Android應用程式開發之電子化設備巡檢
★ 鏈路預算估測預期台灣衛星通訊的發展★ 在中上衰落通道中分集結合技術之二階統計特性
★ 先進長程演進系統中載波聚合技術的初始同步★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 線性調頻連續波雷達以低截獲率、高距離解析度、較無距離盲區及結構簡單等優勢,近年來廣泛受到關注,本研究係以某研發團隊設計開發階段之高度感測器雷達模組雛形架構為研究背景,設計軟體演算法用以解算離地高度之回波差頻訊號,進而實現測距系統之設計。
  首先詳細介紹調頻連續波雷達系統工作原理與結構,並闡述如何對三角波調頻訊號進行分析,進而解算出距離參數,同時根據理論基礎及實際用途相結合,將開發階段的高度感測器,訊號處理無法順利解算出近端目標(地面)訊號的問題,作為研究主軸,藉高杆距離偵測實驗,實際蒐集相關目標回波資料,分別從頻域及時域對調變波訊號進行探究。
  由於線性調頻連續波雷達系統,本身架構存在發射端訊號洩漏問題,加上高度感測器載具硬體製作空間有限,難以有效實現收發之間隔離度,由量測結果發現,回波差頻訊號會因目標距離越遠,訊號強度會逐漸變小甚至遠低於近場雜訊準位,這代表著高度感測器系統降落接近地面時,會無法正確解算目標高度,造成距離偵測能力下降。
  針對實體系統改善方面,研發團隊著手開發出洩漏波陣列雙天線,增加收發端之間的隔離度,本研究則針對近場雜訊及目標訊號強度產生衰減及遭遇干擾之問題,引據迴旋積分、視窗函數、FFT以及地面目標之雷達接收功率損耗與距離平方之特性,以軟體演算建構訊號補償方式,模擬結果證明設計方案有效,除改善雜訊外,同時增強訊號強度,獲得正確訊息且誤差低,符合測距精度可接受範圍,促使整體系統運用層面更為提升。
摘要(英) Linear Frequency-modulated Continuous-wave (LFMCW) Radar has been widely applied in recent years for its advantages of low Probability of Interception, high range resolution, no blind range, and its simple structure. On the basis of the preliminary development of a height sensor Radar model designed by one research team, this paper aims to construct a method of using software algorithms to resolve the beat frequency signal from the relative altitude of the reflected target wave, and further, to implement the design of the range-finding system.
Firstly, the paper introduces the work theory and the structure of FMCW Radar, elaborates on the analysis of the triangular wave FM signal, and then calculates the distance parameter. Furthermore, combining both theoretical and practical uses, the paper puts its emphasis on the problem of the height sensor not successfully calculating the proximal target (ground) signal. Through high distance detection experiments, the relevant data is gathered from the target echo, respectively in frequency domain and time domain.
Due to the problems of the LFMCW Radar structure, including transmitter signal leakage and limited hardware space of height sensor, it is hard to put the transmit-receive isolation into proper effect. The result of the measurements shows that the farther the target is positioned, the weaker the strength of the signal gradually becomes, even much lower than the near-field noise. This represents that when the height sensor system is close to the ground, it fails to resolve the altitude of the target correctly and undermines its ranging ability.
For the height sensor system improvement, the research team had developed a structure of Leaky-wave antenna array pairs, which increase the isolation between the transmitting and receiving antenna. This paper applies convolution, windows functions, FFT, and the characteristics of the square of the distance and ground targets with radar receiver power consumption to encounter the problems of signal attenuation. We establish the signal compensation by software algorithms and the simulation proves the design is valid. It not only reduces the near-field noise but also reinforces the strength of the target signal. The data is correct and the error is low. This design elevates the range-finding system to a higher level by refining the ranging accuracy.
關鍵字(中) ★ 線性調頻連續波雷達
★ 差頻
★ 測距系統
★ 訊號補償
關鍵字(英) ★ LFMCW
★ beat frequency
★ range-finding system
★ signal compensation
論文目次 摘要 ii
ABSTRACT vi
目錄 ix
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 論文架構 2
第二章 文獻探討 3
2-1 前言 3
2-2 連續波雷達工作特性及偵測方式 4
2-3 FMCW雷達特點 6
2-4 雷達測距性能之比較 7
2-5 FMCW雷達發展動態與研究現況 8
2-6 FMCW雷達發展動態與研究現況 10
第三章 FMCW雷達測距系統之探討 11
3-1 雷達測距基本工作原理 11
3-1-1 都卜勒頻率計算 11
3-1-2 FMCW訊號調變方式 12
3-2 FMCW雷達系統線性調變三角波測距及測速 13
3-3 FMCW雷達系統距離解析度 15
3-4 調變訊號線性度對FMCW雷達測距之影響 18
3-5 雷達系統反射接收功率方程式 21
3-6 小結 22
第四章 高度感測器模組設計概念 23
4-1 高度感測器系統雛型架構 23
4-2 天線、各類電路設計理念 24
4-2-1 收發雙天線架構 24
4-2-2 射頻電路模組 30
4-2-3 調變電路設計 30
4-2-4 數位訊號處理單元 31
4-2-5 實體電路模組 32
4-3 高杆高度試驗規劃 33
4-4 高杆測距試驗結果 34
4-5 FMCW雷達近場干擾對測距之影響 34
第五章 軟體演算方法與步驟 36
5-1 訊號前置處理 36
5-2 軟體發展環境 36
5-3 軟體演算步驟說明 36
5-3-1 擷取高杆高度量測資料及建立波形 36
5-3-2 截取線性段掃頻訊號 37
5-3-3 掃頻訊號調降至零位準 37
5-3-4 調變三角波上半週期差頻訊號時域 38
5-3-5 將訊號採自迴旋積分運算 39
5-3-6 視窗函數之特性與應用 41
5-3-7 回波差頻訊號取快速傅利葉轉換 43
5-3-8 距離解析度與頻率轉換比 45
5-3-9 訊號增益演算 47
5-4 演算模擬結果驗證 55
第六章 結語與未來展望 64
6-1 結語 64
6-2 未來展望及研究方向 64
參考文獻 66
附錄 69
參考文獻 [1]向敬成、張明友,雷達系統,初版,五南圖書,台北,民國九十三年七月。
[2]蔡世哲、楊培基,「FMCW LPI雷達之最新發展與運用」,新新季刊,第三十九卷第三期,47-52頁,民國一百年七月。
[3]J.-C. Lin and H.-Y. Hsu,“Timing-delay and frequency-offset estimations for initial synchronisation on time-varying Rayleigh fading channels,” IET Commun., vol. 7, iss. 6, pp. 562-576, Jun. 2013.
[4]F. Z. Duan and Y. T. Liu, “A Method for Target Identification and Improve Coordinate Estimation in CW LFM Radar,” Digital Signal Processing, Proc. of Int. Conf., pp. 849-853, Florence, Italy, Sep. 1987.
[5]A. E. Carr, L.G. Cuthbert and A. D. Olver, “Digital Signal Processing for Target Detection in FMCW Radar,” IEEE Proceedings on Radar and Signal Processing, Vol. 128, No. 5, pp. 331-336, Oct. 1981.
[6]A. D. Oliver and L. G. Cuthbert, “FMCW Radar for Hidden Object Detection,” IEEE Proceedings on Radar and Signal, Vol. 135, No. 4, pp. 354-361, Aug. 1988.
[7]A. Z. Botros and A. D. Olver, “Analysis of Target Response of FM-CW Radar,” IEEE Transactions on Antennas and Propagation, AF-34, pp. 575-581, 1986.
[8]M. M. He, W. B. Sun, Z. O. Huang, et al., “Development of mm-wave FMCW Transceiver Modules,” Research & Progress of SSE, pp. 19-52, 1999.
[9]R. M. Hidalgo, J. G. Fernandez, R. R. Rsul, “A Simple Adjustable Window Algorithm to Improve FFT Measurements,” IEEE Transactions on Instrumentation and Measurement, pp. 31-36, 2002.
[10]H. B. Hu, C. J. Qi and Z. Y. Lv, “A Novel FFT Algonthm for Non-Synchronous Sample“ Proceedings of the CSEE, pp. 13-17, 2004.
[11]P. G. Ong and H. K. Teng, “Digital LPI Radar Detector,” Naval Postgraduate School , Thesis, Mar. 2001.
[12]M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger and M. Vossiek, “Phase-Error Measurement and Compensation in PLL Frequency Synthesizers for FMCW Sensors—I:context and application,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 54, No. 5, pp. 1006-1017, May. 2007.
[13]G. M. Brooker, “Understanding Millimetre Wave FMCW Radars,” 1st International Conference on Sensing Technology, pp. 152-157, Nov. 2005.
[14]P. J. Burke, “Ultra-Linear Chirp Generation Via VCO Tuning Predistortion,” IEEE MTT-S International Microwave Symposium Digest, Vol. 2, pp. 957-960, May. 1994.
[15]Y. D. Lin, J. W. Sheen and C. K. C. Tzuang, “Analysis and Design of Feed¬ing Structures for Microstrip Leaky-Wave Antenna,” IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 9, pp. 1540-1547, Sep. 1996.
[16]張繼禾、黃瑞琦、劉鳳玲、楊培基,「C頻段洩漏波雙天線架構降低藕合效應之方法」,新新季刊,第四十卷第三期,232~236頁,民國一百年七月。
[17]呂金龍,「光網式紅外線尋標器的反演通則」,國立中山大學,碩士論文,民國九十五年六月。
[18]F. F. Costa and A. J. M. Cardoso, “Harmonic and Interharmonic Identification Based on Improved Prony’s Method,"32nd Annual Conference on IEEE Industrial Electronics, pp. 1047-1052. Nov. 2006.
[19]W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd Edition, John Wiley & Sons, Inc. 1998.
[20]J.-C. Lin, “A frequency offset estimation technique based on frequency error characterization for OFDM communication on time-varying multipath fading channels,”IEEE Trans. Vehic. Technol., vol. 56, no. 3, pp. 1209-1222, May 2007.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明