博碩士論文 955401012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.236.222.124
姓名 蔡興旺(Hsing-Wang Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 有機太陽能電池與有機低電壓電晶體之整合研究
(Integration of Organic Solar Cells and Low Voltage Organic Thin Film Transistors)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 高效能矽鍺互補型電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機太陽能電池具備低溫與溶液式製程可製作在塑膠基板上,以達到大面積生產並降低製作成本。有機太陽能電池本身效率必需要達到10%以上方可應用。因此,多數研究方向主要針對有機太陽能電池效率的物理特性改良、開發高效率材料與元件結構最佳化。根據攜帶式產品的功能需求,電路中的電子元件必須具備低功效損耗並可整合內建電池,以利於增加產品的使用時間。基於以上考量,此論文主要目的為設計一種導電層/絕緣層/半導體層的結構,以達到整合有機太陽能電池與有機電晶體在同一基板上。此整合元件的優點可電路簡單化與減少元件的製作步驟,未來可應用於輕薄的攜帶式產品。
在第二章,我們研究一種多層(導電層/絕緣層/導電層)電極取代有機太陽能電池傳統的單層電極。此多層電極表面的偶極效應可以有效增加電極表面功函數,表面功函數的提升有助於有機太陽能電池內建電場的改善,增加有機太陽能的電池效率。在第三章,我們發展一種導電層/絕緣層/半導體層的元件結構製作有機太陽能電池。導電層上的絕緣層厚度可以使用加熱控制與反應在有機電極上。利用此結構有機太陽能電池可提高元件效率,同時元件操作壽命也有所改善。在第四章,將第三章的結構應用在低電壓電晶體,由於應用在有機電晶體上的P3HT半導體材料的導電性不高,一般會利用加熱方式來提高導電性,但是製作在塑膠基板上並不耐高溫,因此我們發展出一種對有機主動層局部加熱的方式,其特點為快速加溫與散熱快。有機主動層利用電壓加熱處理後,有機低電壓電晶體可以得到高電流輸出特性。此電壓加熱的原理與結果也在此章節中一並討論。在第五章,主要討論重點在整合有機太陽能電池與低電壓有機電晶體在同一基板。利用前束導電層/絕緣層/半導體層的概念將有機太陽能電池與低電壓有機電晶體做結構上的整合,並利用液滴塗覆法(drop coating )將有機太陽能電池的主動層整合到元件中,此整合元件中將具備有太陽能電池與電晶體的特性。最後於第六章,我們將針對前述的實驗結果作出討論同實時提出改進方法與未來應用方向。
摘要(英) Solar cells based on polymer materials have attracted a great deal of attention due to their low cost and potential for large-scale fabrication, through solution processes at low temperature. For commercial applications, the efficiency of polymer solar cells (PSC) must exceed 10%. But currently, most PSC devices remain far from that level of efficiency. For this reason, a number of researchers have focused on improving the electrical and physical characteristics of such devices through the development of new materials and the structural optimization. To meet the market demand for portable products, functional circuitry must be designed for low power consumption operating on self-contained power supplies. With this in mind, designing a conductor-insulator-semiconductor (CIS) structure that combines polymer solar cells (PSC) with polymer thin film transistors (TFTs) working at low voltage is the primary objective behind this thesis. The advantages of such integration would be the simplification of circuitry and the simplification of the fabrication process. Propress made in this study show possibility for the development of thin, lightweight products in the future.
In chapter 2, we study a conductor/insulator/conductor (CIC) multi-layer electrode as a replacement for those traditional ones used in PSCs. The work function of this multi-layer electrode was improved by the dipole effect on the surface of the electrode, thereby influencing the internal electric field, and to enhancing the efficiency of the solar cells. In chapter 3, the thickness of the insulator in the structure of the CIS can be controlled through thermal treatment after spin-coated onto the organic electrode. With this controlled technique, the efficiency and the lifespan of the PSC is enhanced. In chapter 4, a low voltage polymer TFT is fabricated with a CIS structure using a poly(3-hexylthiophene) (P3HT) semiconductor, and us electrical characteristic are discussed. The P3HT semiconductor is difficult to apply as a polymer TFT due to low conductivity. Enhancing the conductivity of polymer OTFTs by annealing is well known, but difficult to apply on a plastic substrate, due to low heat tolerance. For this reason, we propose a bias annealing technique with the advantages of rapid heating and highly localized heat radiation. A high input current can be obtained using polymer TFTs by bias annealing of the active layer, the principle of which is discussed later. In chapter 5, we focus on integrating the PSC and polymer TFTs on the same substrate, through the use of the CIS structural concept mentioned previously. This integrated device is given both the characteristic of PSC and polymer TFTs by forming the active layer through drop coating. In chapter 6, the experiment results mentioned previously are concluded, with suggestions for improving the integration of the structure in future studies.
關鍵字(中) ★ 電流加熱處理
★ 溶液式製程
★ 有機絕源層
★ 整合元件
★ 有機材料
★ 有機低電壓電晶體
★ 有機太陽能電池
關鍵字(英) ★ Organic solar cells
★ Low voltage thin film organic transistors
★ Organic materials
★ Integrated devices
★ Organic insulator layer
★ Current thermal treatment
★ Solution processing
論文目次 Table of Contents
Chinese abstract I
English Abstract III
Table of Contents V
List of Figures VIII
List of Table XIV
Chapter 1.Introduction.
1-1. Motivation 1
1-2. Overview 2
1-2-1. Development of Polymer Solar Cells 2
1-2-2. Development of Organic TFTs 7
1-2-3. Integrated Polymer Solar Cells with Organic
TFTs 8
1-3. Thesis Organization 9
Chapter 2. A Conductor/Insulator/Conductor Complex Layer (CIC) at Anode for Current Enhancement in a Polymer Solar Cell.
2-1. Introduction 11
2-2. Electric Field Effect 12
2-3. Device Fabrication of 16
2-4. Electrical Characteristic of CIC Layer 18
2-4-1. Performance of the CIC layer 18
2-4-2. Absorption Spectrum and Ultraviolet
Photoemission Spectrum (UPS) Analysis 20
2-4-3. Electrostatic Force Microscopy (EMF) Analysis 23
2-5. Electrical Characteristics 27
2-5-1. The I-V Characteristics of the Device 27
2-5-2. Incident Photon Conversion Efficiency
measurement 31
2-5-3. Operation Mechanism of the 37
2-5-4. The I-V Characteristics of the Device on Plastic
Substrate 39
2-6.Summary 41
Chapter 3. Conductor -Insulator-Semiconductor (CIS) Structure of Polymer Solar Cell by an Ultra-Thin Polymer Insulator.
3-1. Introduction 42
3-2. Electrical Characteristics of CIS Solar Cell 43
3-3. Shunt Resistance and Series Resistance 45
3-4. Device Fabrication of Process 47
3-5. An Ultra-thin of PS-r-PMMA Layer 49
3-5-1 Introduction of PS-r-PMMA 49
3-5-2. Film Performance of an Ultra-thin PS-r-PMMA 51
3-6. Electrical Characteristics 55
3-6-1. Electrical Characteristics of the MIM device 55
3-6-2. Electrical Characteristics of the Device 56
3-6-3. Operation Lifetime of Device 62
3-7. Summary 65
Chapter 4. Conductor-Insulator-Semiconductor (CIS) Structure of Low Voltage Polymer TFTs with Ultra-Thin Polymer Dielectric by Electrical Annealing.
4-1. Introduction 66
4-2. Mechanism of Low Voltage Organic TFTs 68
4-3. Device Fabrication of Process 69
4-4. Electrical Characteristics of the Device 69
4-4-1. Structure Design 72
4-4-2. Electrical Characteristic of the Device 75
4-4-3. Device characteristics by Bias Annealing
Treatment 82
4-4-4. Mechanism of Bias Annealing Treatments 87
4-4-5. The Analysis of P3HT Film on Bias Annealing 89
4-5. Summary 100
Chapter 5. Solution Processing for Integrated PSC and Polymer TFTs was by common Conduction-Insulator-Semiconductor (CIS) Structure.
5-1. Introduction 101
5-2. Device Fabrication of process 103
5-3. Electrical characteristic of MIM Device 106
5-4. Photoactive Layer by Drop Coating 107
5-5. Comparison of Fabricated Process 112
5-6. The Characteristics of Integrated Device 114
5-7. Summary 116
Chapter 6. Conclusion and Future Work.
6-1. Conclusion 117
6-2. Future Work 119
Reference 121
Publication List 131
參考文獻 [1]A. Simms, It’s time to plug into renewable power, New Scientist, 183, 18-19, 2004.
[2]http://www.ren21.net/globalstatusreport/download/RE_GSR_
2006_Updata.PDF.
[3]http://www.gre-ag.com/en_solarenergie.php/
[4]http://www.alternative-energy-resources.net/
[5]D. M. Chapin, C. S. Fuller, and G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys. 25, 676, 1954.
[6]A. Metz, R. Hezel, Easy-to-Fabrcate 20% efficient large-area silicon solar cell. Solar. Energy Materials. and Solar. Cells. 65,325-330, 2001.
[7]T. Takamoto1,M. Kaneiwa1, M. Imaizumi, and M. Yamaguchi, InGap/GaAs -based multijunction Solar Cells, Prog. Photovolt: Res. Appl.13, 495–511, 2005.
[8]J. Rebecca, J. Todd, J. Willliam, W. Sigurd, Y. Jeffrey, and G. Subhendu, Effects of mechanical strain on the performance of amorphous silicon triple-junction solar cells, Conference Record of the IEEE Photovoltaic Specialists Conference, 1214-1217, 2002.
[9]P. Mahawela, G. Sivaraman, S. Jeedigunta, J. Gaduputi, M. Ramalingam, S. Subramanian,S. Vakkalanka, C.S. Ferekides, D.L. Morel, II–VI compounds as the top absorbers in tandem solar cell structures, Materials Science and Engineering B. 116, 283–291, 2005.
[10]H. Hoppea and N. S. Sariciftci, Organic solar cells: An overview, J. Mater. Res. 19, 1924-1945, 2004.
[11]H. Nemec, J. Rochford, O. Taratula, E. Galoppini, P. Kuzel, T. Polivka, A. Yartsev, and V. Sundstrom, Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: A study using ultrafast terahertz spectroscopy, Physical Review Letters. 104, 197401, 2010.
[12]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymer:Halogen Derivatives of Polyacetylene. J. Chem. Soc. Chem. Commum. 578-580, 1977.
[13]B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737-740, 1991.
[14]J. Xue1, B. P. Rand1, S. Uchida and S. R. Forrest, A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell, Adv, Mater. 17, 66-71, 2005.
[15]S. Guines, H. Neugebauer and N. S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Chem. Rev. 107, 1324−1338, 2007.
[16]C. W. Tang, 2-Layer organic photovoltaic, Appl. Phys. Lett. 48, 183-185, 1986.
[17]J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, "4.2% Efficient Organic Photovoltaic Cells with Low Series Resistances," Applied Physics Letters. 84, 3013 - 3015, 2004.
[18]W. Ma, C, Yang, X. gong, K. Lee, and A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Adv. Funct. Mater. 15, 1617-1622, 2005.
[19]H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll-to-Roll Process without Sacrificing High Device Performances, Adv. Funct. Mater. 22, E247-E253, 2010.
[20]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science. 270, 1789-1791, 1995.
[21]G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Tandem Sola Cells-Towards 15% Energy-Conversion Efficiency, Adv. Mater. 20, 579-583, 2008.
[22]G. Li, V. Shrotriya. J. S. Huang, Y. Yao. Moriarty, K. Emery, and Y. Yang. Nat. Mater. 4, 864, 2005.
[23]Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, Solvent-vapor treatment induced performance enhancement of poly„3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells, Appl. phys. Lett. 90. 043504, 2007.
[24]Q. Shi, Y. Hou, X. Liu, and Z. Feng, Annealing effect on the carrier transport (2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene): C60 bulk heterojunction, J. Appl. Phys,. 104, 083707, 2008.
[25]H. Hoppe, and N. S. Sariciftci, Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells, J. Mater. Chem. 16, 45-61, 2006.
[26]J. Liu, Y. Shi, and Y. Yang, Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices, Adv. Funct. Mater. 11, 420-424, 2001.
[27]M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. Hal, and R. A. J. Janssen, Efficient Methano [70] fullerene/ MDMO-PPV Bulk Hetero-junction Photovoltaic Cells. Angew. Chem. Int. Ed., 42, 3371, 2003.
[28]K. Anusit, P. Phimwipha, K. Annop, I. Phansak, and A. Udom,Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk-heterojunction solar cells, Solar Energy Materials and Solar Cells. 94, 531-536, 2010.
[29]C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, Effect of LiF metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80, 1288-1290, 2002.
[30]M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, PNAS. 105, 2783, 2008.
[31]M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Solar. Energy Materials. And Solar. Cells. 92, 686–714, 2008.
[32]Y.Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G.Li, C. Ray, and L. Yu, For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Funct, Mater. 22, E135-E138, 2010.
[33]http://feelthephoton.blogspot.com/
[34]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Solar cell efficiency tables (version 36), Prog, Photovolt: Res. Appl. 18, 346–352, 2010.
[35]S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature. 428, 29, 911-918. 2004.
[36]L. A. Majewski, R. Schroeder, and M. Grell, Low-Voltage, High-Performance Organic Field-Effect Transistors with an Ultra-Thin TiO2 Layer as Gate Insulator, Adv. Funct. Mater. 15, 1017-1022. 2005.
[37]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, Ultralow-power organic complementary circuits, Nature. 445, 745-748, 2007.
[38]C.-Y. Wei, F. Adriyanto, Y.-J. Lin, Y.-C. Li, T.-J. Huang, D.-W. Chou, and Y.-H. Wang, "Pentacene-Based Thin-Film Transistors With a solution - Process Hafnium Oxide Insulator," IEEE Electron Device Letters. 30, 1039-1041, 2009.
[39]Y. D. Park, D. H. Kim, Y. Jang. M. Hwang, J. A. Lim, and K. Cho, "Low-voltage polymer thin-thin transistors with a self-assembled monolayer as the gate dielectric," Appl. Phys. Lett. 87, 243509-1-243509-3, 2005.
[40]H. N. Raval, S. P. Tiwari, R. R. Navan, S. G. Mhaisalkar, and V. R. Rao, " Solution-Processed Bootstrapped Organic Inverters Based on P3HT With a High- k Gate Dielectric Material," IEEE Electron Device Letters. 30, 484-486, 2009.
[41]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant D. Knoesen, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Solar. energy. materials. and solar. cells, 93, 1674-1680, 2009.
[42]K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, Air-Stable Polymer Electronic Devices, Adv. Mater. 19, 2445-2449, 2007.
[43]G. A. O'Brien, A. J. Quinn, D. A. Tanner, and G. Redmond,A Single Polymer Nanowire Photodetector, Adv. Mater. 18, 2379-2383, 2006.
[44]K. Nakamura, T. Hata, and A. Yoshizawa, Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate, Appl. Phys. Lett. 89, 103525, 2006.
[45]S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, Photovoltaic effects on the organic ambipolar field-effect transistors, Appl. Phys. Lett. 90, 063511, 2007.
[46]M. Shkunov, R. Simms, M. Heeney, S. Tierney, and I. McCulloch, Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno [2,3-b] thiophene Terthiophene Polymer and Methanofullerenes, Adv. Mater. 17, 2608-2612, 2005.
[47]Pivrikas, N. S. Sariciftci, G. Juska and R. Osterbacka, A Review of Charge Transport and Recombination in Polymer/Fullerene Organic Solar Cells, Prog. Photovolt: Res. Appl, , 15, 677-696, 2007.
[48] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science.270,1789-1791,1995.
[49] G Dennler, M. C. Scharber, and C. J. Brabec, Polymer-Fullerene Bulk-Heterojunction, Solar Cells, Adv Mater, 21,1323-1338, 2009.
[50]M. M. Mandoc, W. Veurman, L. J. A.n Koster, B. d. Boer, and P. W. M. Blom, Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells, Adv. Funct, Mater. 17, 2167-2173, 2007.
[51] L. J. Koster, V. D. Mihailetchi, and P. W. M. Blom, Ultimate efficiency of polymer fullerene bulk heterojunction solar cells, Appl. Phys. Lett 88, 093511-1~093511-3, 2006.
[52] D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T Collins and D. S. Ginlley, Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells, Adv. Funct. Mater. 17, 264-269, 2007.
[53] L. J. A. Koster, V. D. Mihailetch, and P. W. M Blom, Appl. Phys. Lett. 88, 052104-1, 2006.
[54]G. Juska, K. Arlauskas, G. Sliauzys, A. Pivrikas, A. J. Mozer, N. S. Sariciftci, M. Scharber, and R. Osterbacka, Double injection as a technique to study charge carrier transport and recombination in bulk-heterojunction solar cells, Appl. Phys. Lett. 87 ,222110-1, 2005.
[55] K. Tvingstedt, O. Inganäs, Electrode Grids for ITO Free Organic Photovoltaic Devices, Adv. Mater. 19, 2893-2897, 2007.
[56]F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganäs, Polymer Photovoltaic Cells with Conducting Polymer Anodes, Adv. Mater. 14 ,662-665, 2002.
[57] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies, J. Appl. Phys. 87, 295, 2000.
[58] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes, Appl. Phys. Lett. 77, 2255, 2000.
[59] M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells. 92, 686–714, 2008.
[60]G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Efficient inverted polymer solar cells, Appl. Phys. Lett. 88, 253503-1, 2006.
[61]M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, PNAS. 105, 2783, 2008.
[62]J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftic, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80, 1288. 2002.
[63]J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater. 18, 572, 2006.
[64] T. C. Monson, M. T. Lloyd. D. C. Olson, Y. J. Lee, and J. W. P. Hsu, Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells, Adv. Mater. 20, 4755-4759, 2008.
[65]S. H. Eom, S. Senthilarasu,S. C. Yoon, J. Lee, and S. H. Lee, Nano-Scale ZnO Buffer Layer for Inkjet-Printed Polymer Solar Cells, Journal of Nanoscience and Nanotechnology. 8, 5113-5117, 2008.
[66]SPIE Vol. 6192, 61920D, 2006.
[67]S. Braun, W. Osikowicz, Y. Wang and W. R. Salaneck, Energy level alignment regimes at hybrid organic–organic and inorganic–organic interfaces, Organic. Electrons., 8, 14-20, 2007
[68] S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells, Adv. Funct. Mater. 16, 95-100, 2006.
[69]N. J. Watkins, L. Yan, and Y. Gao, Electronic structure symmetry of interfaces between pentacene and metals, Appl. Phys. Lett. 80,4384-4386, 2002.
[70] N. J. Watkins, S. Zorba, and Y. Gao, Interface formation of pentacene on Al2O3, J. Appl. Phys. 96, 425-429, 2004.
[71]J. Epstein, F.-C. Hsu, N.-R. Chiou and V. N. Prigodin, “Electric-field induced on-leveraged metal–insulator transition in conducting polymer-based field effect devices”, Current Applied Physics. 2, 339-343, 2002.
[72] T. Skotheim, R. Elsenbaumer, J. Reynolds (Eds), Handbook of Conducting Polymers, Marcel Dekker, New York, 27-121. 1998.
[73]S. Andrzej, The influence of the electrical field on structures dimension measurement in electrostatic force microscopy mode, Opt. Appl. 39, 933-941, 2009
[74] R. M. Nyffegger, and R. M. Penner, Electrostatic force microscopy of nanocrystals with nanometer-scal resolution, Appl. Phys. Lett. 71, 1878-1880, 1997.
[75]J. K. J. Duren, X. Yang. J. Loos, C. W. T. B. Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance, Adv. Funct. Mater. 14, 425-434. 2004.
[76]J. K. J. van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance, Adv. Funct. Mater. 14 425-434, 2008
[77]S. H. Jin, B. V. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee and Y. S. Gal, Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system, Solar. Energy Materials. and Solar. Cells 91, 1187-1193, 2007.
[78]J. W. Kang, W. I. Jeong, J. J, Kim, H. K. Kim, D. G. Kim, and G. H. Lee, High-Performance Flexible Organic Light-Emitting Diodes Using Amorphous Indium Zinc Oxide Anode, Electrochem. Solid. State. Lett 10 (2007) J75-J78.
[79]Y. Liying,X. Hao, T. Hui, Y. Shougen, Z. Fengling, Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells, Solar Energy Materials and Solar Cells. 94, 1831-1834, 2010.
[80]Y. Bin, l. Qian, Y. Liying, W. Xiaoming, L. Zunfeng, H. Yulin, Y. Shougen, and C. Yongsheng, Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells, Journal of Nanoscience and Nanotechnology. 10, 1934-1938, 2010.
[81]J. K. Lee, N. E. Coates, S. Cho, N. Sung. Cho, D. Moses, G. C. Bazan, K. Lee, and A. J. Heeger, Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol, Appl. Phys. Lett. 92, 243308, 2008.
[82]E. Ahlswede, J. Hanisch and M. Powalla, Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells, Appl. Physic. Letters. 90, 163504, 2007.
[83]A. M. Nardes, M. Kemerink, R.A. J. Janssen, J.A. M. Bastiaansen, N.M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, Microscopic Understanding of the Anisotropic Conductivity of PEDOT:PSS Thin Films, Adv. Mater, 19, 1196-1200, 2007.
[84]S. K. Hau, H. L. Yip, N. S. Baek. J. Zou, K. O'Malley, and A. K.-Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phy. Lett. 92, 253301, 2008.
[85]W. A. Nevin and G.A. Chamberlain, Effect of Oxide Thickness on Properties of Metal-Insulator-Organic Semiconductor Photovoltaic Cells, IEEE Transactions on Electron Devices, Vol. 40, No. 1, 1993.
[86]T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett. 75, 1679, 1999.
[87]M. Jorgensen, K. Norrman, and F. C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells. 92, 686-714, 2008.
[88]T. H. Huang, H. C. Huang, and Z. Pei, Temperature-dependent ultra-thin polymer layer for low voltage organic thin-film transistors. Org. Electron. 11, 618-625. 2010.
[89]R. O. Loutfy, Y-H Shing and D. K. Murti, Conductor-Insulator-Semiconductor
Organic Solar Cells. Solar Cells. 5, 331-341, 1982.
[90]G. Horowitz, Organic Field-Effect Transistors, Adv. Mater. 10, NO. 5, 1998.
[91]J. D. Servaites, S. Yeganeh, T. J. Marks and M.A. Ratner, Efficiency Enhancement in Organic Photovoltaic Cells:Consequences of Optimizing Series Resistance, Adv. Funct. Mater. 20, 97-104, 2010.
[92]G. Li, V. Shrotriya. J. S. Huang, Y. Yao. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4, 864-868, 2005.
[93]G. J. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization, 215, 2003.
[94]P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science, Controlling Polymer-Surface Interactions with Random Copolymer Brushes, 275, 1458, 1997.
[95]H.H. Liao, L.M. Chen, Z. Xu, G. Li, Y. Yang, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett. 92, 173303, 2008.
[96]N. Li, B.E. Lassiter, R.R. Lunt, G. Wei, S.R. Forrest, Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells, Appl. Phys. Lett. 94, 023307, 2009.
[97]J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.Y. Kim, K. Cho, Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics, Appl. Phys. Lett. 91, 112111, 2007.
[98]J.A. Hauch, P. Schilinsky, S.A. Choulis, S. Rajoelson, C.J. Brabec, The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells, Appl. Phys. Lett. 93,103306, 2008.
[99]F. Mariano, M. Mazzeo, Y. Duan, G. Barbarella, L. Favaretto, S. Carallo, R. Cingolani, and G. Gigli, Very low voltage and stable p-i-n organic light-emitting diodes using a linear S,S-dioxide oligothiophene as emitting layer, Appl. Phys. Lett. 94, 063510, 2008 .
[100]S. Monfraya, C. Fenouillet-Berangerb, G. Bidala, F. Boeufa, S. Denormea, J.L. Huguenina, M.P. Samsona, N. Loubeta, J.M. Hartmannb, Y. Campidellia, V. Destefanisa, C. Arveta, K. Benotmaneb, L. Clementa, O. Faynotb and T. Skotnickia, Thin-film devices for low power applications , Solid-State Electronics. 54, 90-96, 2010.
[101]U. Zschieschang,F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, K. Kern, and H. Klauk, Flexible Low-Voltage Organic Transistors and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability , Adv. Mtaer. 22, 982–985, 2010.
[102]S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature. 428, 911-918. 2004.
[103]U. Zschieschang, F. Ante, T. Yamamoto,K. Takimiya, H. Kuwabara, M. Lkeda, T. Sekitani, T. Someya, K. Kern, and H. Klauk, Flexible Low-Voltage Organic Transistors and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability, Adv. Mater. 22, 982-985, 2010.
[104]Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics, IEEE Electron Device Letters. 18, 87-89 (1997).
[105]Y. D. Park, D. H. Kim, Y. Jang. M. Hwang, J. A. Lim, and K. Cho, "Low-voltage polymer thin-thin transistors with a self-assembled monolayer as the gate dielectric," Appl. Phys. Lett. 87, 243509-1-243509-3, 2005.
[106]H. N. Raval, S. P. Tiwari, R. R. Navan, S. G. Mhaisalkar, and V. R. Rao, " Solution-Processed Bootstrapped Organic Inverters Based on P3HT With a High- k Gate Dielectric Material," IEEE Electron Device Letters. 30, 484-486, 2009.
[107]P. Pingel, A. Zen, R. D. Abellón, F. C. Grozema, L. D. A. Siebbeles, D. Neher, Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers, Adv. Funct. Mater. 20, 2286-2295, 2010.
[108]S. Cho1, K. Lee1, J. Yuen, G. Wang, D. Moses, A. J. Heeger, M. Surin, and R.Lazzaroni, Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films, J. Appl. Phys. 100, 114503, 2006.
[109]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant D. Knoesen, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Solar. energy. materials. and solar. Cells. 93, 1674-1680, 2009.
[110]C. J. Ko, Y. K. Lin, and F. C. Chen, Microwave Annealing of Polymer Photovoltaic Devices, Adv. Mater. 19, 3520-3523, 2007.
[111]H. H. Yu, S. J. Hwang, R. L. Chen, and C. Y. Yang, Study of the purifying affects of thermal annealing for polymer-wall liquid crystal cells, Liquid Crystals. 35, 1339-1343, 2008.
[112]E. W. Okraku, M. C. Gupta, K. D. Wright, Pulsed Laser Annealing of P3Ht/PCBM Organic Solar Cells, Org. Electron.12, 2013-2017, 2010.
[113]H-W Kang, K-K Han, J-E Park, and H-H Lee, "High mobility, low voltage polymer transistor," Org. Electron. 8, 460-464, 2007.
[114]H. S. Tan, T. Cahyadi, Z. B. Wang, A. Lohani, Z. Tsakadze, S. Zhang, F. R. Zhu, and S. G. Mhaisakar, "Low-Temperature-Processed Inorganic Gate Dielectrics for Plastic-Substrate-Based Organic Field-Effect Transistors ," IEEE Electron Device Letters. 29, 698-700, 2008.
[115]C.-Y. Wei, F. Adriyanto, Y.-J. Lin, Y.-C. Li, T.-J. Huang, D.-W. Chou, and Y.-H. Wang, "Pentacene-Based Thin-Film Transistors With a solution - Process Hafnium Oxide Insulator," IEEE Electron Device Letters, vol. 30, no. 10, pp. 1039-1041, 2009.
[116]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, " Ultralow-power organic complementary circuits," Nature. 15, 745-748, 2007.
[117]J. M. Ball, P. H. Wobkenberg, F. Colleaux, M. Heeney, J. E. Anthony, I. McCulloch, D. C. Bradley, and T. D. Anthopoulos, Solution Processed Low-Voltage Organic Transistors and Complementary invertrs, Appl. Phys. Lett. 95, 103310, 2009.
[118]Y. F. Yu, C. K. Jui, H. M. Yu, and L. C. Chin, High-performance poly(3-hexylthiophene) transistors with thermally cured and photo-cured PVP gate dielectrics, Journal of Materials Chemistry. 18, 5927-5932, 2008.
[119]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, Ultralow-power organic complementary circuits, Nature. 445, 745-748, 2007.
[120]R. A. L. Jones, R. W. Richards, Polymer at Surfaces and Interfaces, Cambridge University Press, Cambridge, UK 1999.
[121]P. F. Burroughes, C. A. Jones, R. H. Friend, New semiconductor device physics in polymer diodes and transistors, Nature. 335, 137-141, 1988.
[122]H sirringhaus, N. Tessler, R. H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers, Science. 280, 1741-1744, 1998.
[123]Heng-Tien Lin, Zingway Pei, Jun-Rong Chen, and Yi-Jen Chan, “An UV Erasable Stacked Diode-Switch Organic Nonvolatile Bistable Memory on Plastic Substrates”, IEEE Electron Device Letters. 30, 18-20, 2008.
[124]D. J. Gardiner, (1989). Practical Raman spectroscopy. Springer-Verlag. ISBN 978-0387502540.
[125]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant, and D. Knoesen, The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material, J Mater Sci. 44, 3192–3197, 2009.
[126]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant D. Knoesen, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Solar. energy. materials. and solar. Cells. 93, 1674-1680, 2009.
[127]J. Lewis, Material challenge for flexible organic devices, materials today 9, 39-45,
2006.
[128]S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, Photovoltaic effects on the organic ambipolar field-effect transistors, Appl. Phys. Lett. 90, 063511, 2007.
[129]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, " Ultralow-power organic complementary circuits," Nature, vol. 445, no. 15, pp. 745-748, 2007.
[130]N. Keniji, H. Takuya, Y. Atsushi, O. Katsunari, E. Hiroyuki and K. Kazuhiro, Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate, Appl. Phys. Lett. 89, 103525, 2006,
[131]E. J. Meijer, D. M. Deleeuw, S. Setayesh, E. V. Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Solution-processed ambipolar organic field-effect transistors and inverters, Nature, 2, 678-682, 2003.
[132]T. H. Huang, H. C. Huang, and Z. Pei, Temperature-dependent ultra-thin polymer layer for low voltage organic thin-film transistors. Org. Electron. 11, 618-625. 2010.
[133]J. M. Ball, P. H. Wobkenberg, F. Colleaux, M. Heeney, J. E. Anthony, I. McCulloch, D. C. Bradley, and T. D. Anthopoulos, Solution Processed Low-Voltage Organic Transistors and Complementary invertrs, Appl. Phys. Lett. 95, 103310, 2009.
[134]W. A. Nevin and G.A. Chamberlain, Effect of Oxide Thickness on Properties of Metal-Insulator-Organic Semiconductor Photovoltaic Cells, IEEE Transactions on Electron Devices. Vol. 40, No. 1, 1993.
[135]Choong, V. Park, Y. Gao, Y. Wehrmeister, T. Mullen, K. Hsieh, B. R. Tang, C. W, Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition, Appl. Phys. Lette. 10, 1492-1494, 1996.
[136]H. Becker,S. E. Burns and R. H. Friend, Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers, Phys. Rev. B 56. 1893–1905, 1997.
[137]L. J. Koster, V. D. Mihaletchi, and P. W. M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells, Appl. Phys. Lette, 88. 152104, 2006.
[138]G. Zhao, Y. He, and Y. Li, 6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization , Adv. Mater. 22, 4355-4358, 2010.
指導教授 李佩雯、詹益仁
(Pei-Wen Li、Yi-Jen Chan)
審核日期 2010-11-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明