博碩士論文 955401023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.227.2.246
姓名 蔡謹隆(Chin-lung Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以多重耦合線實現單端至平衡帶通濾波器之分析與設計
(Analysis and Design of Single-to-Balanced Multicoupled Line Bandpass Filters)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 手持行動無線裝置被廣泛的使用在日常生活中。因此,輕薄短小是一個非常重要的趨勢。要達到此目的,所有的電子零件必須朝向多功能、高效能與低成本的方向邁進。在射頻收發模組中,帶通濾波器、單端至平衡轉換器與匹配電路是非常重要的元件並且佔用較多的電路面積。本論文提出兩種電路架構,同時整合上述三種電路功能,有效的降低整體的電路面積與元件數量。
在本論文中所提出的第一個設計電路,主要是由多重耦合線與負載電容所組成。藉由導入負載電容,耦合線電氣長度可小於二十四分之一波長,達到電路小型化的目的。再加上多重耦合線接地位置的設計,使得此電路同時具備帶通濾波器、單端至平衡轉換器與匹配電路的特性。藉由濾波器階數的增加,此電路可以輕易提升外頻選擇度。藉由圖示轉換法來分析多重耦合線,使得設計流程與分析過程可以較有效率且直觀。為了要驗證所提出的電路架構與設計流程,不同的設計規格如阻抗轉換、濾波器階數、中心頻寬與中心頻將會一一舉例,並且最後用低溫陶瓷共燒技術來實現電路,達到電路小型化的目的。俱備二階帶通濾波器響應的電路將實現在 2.0 mm × 1.2 mm (2012) 的晶片上,而俱備三階帶通濾波器響應的電路將實現在 2.6 mm × 1.2 mm (2612) 的晶片上。除此之外,由量測板所產生的高頻側傳輸零點可透過耦合量的控制來調整傳輸零點的位置,進而提升外頻選擇度。
在本論文中所提出的第二個設計電路,也是由多重耦合線與負載電容所組成。本電路藉由電磁耦合效應所產生的兩個傳輸零點可以有效控制零點位置。另外,非相鄰耦合線的影響與隨頻率而變化的導納反轉器也在本論文中有詳細的探討。藉由導入負載電容,耦合線電氣長度可小於二十九分之一波長,此電路架構最後也是以低溫陶瓷共燒技術來達到電路小型化的目的。所舉出的兩個設計例子證明零點可以有效且彈性的控制。
本論文所提出的兩種電路架構具備高整合度、高選擇度、精簡的電路架構以及小尺寸等特性。隨著射頻收發模組小型化與多工化的趨勢,本論文所提出來的單端至平衡帶通濾波器將非常適合運用在現今的手持行動無線裝置上。
摘要(英) Nowadays portable wireless communication devices are being widely adopted into daily life, with ever-greater demands on more functionalities, higher performance, and
lower cost in smaller and lighter formats. Especially, the demand for high-performance and miniaturized passive components such as filters, baluns, and matching circuits continues to grow since these passive components usually dominate the circuit area of RF transceiver. In this study, we proposed two kinds of single-to-balanced multicoupled line bandpass filters that integrated above three functions in a simple circuit. In this way, one can reduce the circuit area as well as component count effectively.
The first design is composed of a multicoupled line of electric length as small as λg/24 along with shunt capacitors loaded at suitable positions. By a proper design of ground terminations for the multicoupled line, the proposed filter is simultaneously equipped with the functionality of a bandpass filter, a balun, and an impedance transformer. The bandpass characteristic can be easily developed to higher order for better selectivity. The graph-transformation method for coupled-line analysis is adopted to make the design procedure efficient and intuitive. To validate the design procedure and feasibility of proposed filter for mobile applications, several design examples with different filter order, impedance transformation ratio, fractional bandwidth and center frequency have been implemented in chip type by using the low temperature co-fired ceramic technology (LTCC). The second-order design is realized in a chip size of 2.0 mm × 1.2 mm (2012), while the third-order one is realized in a chip size of 2.6 mm × 1.2 mm (2612). Moreover, an additional transmission zero in the upper stopband can be achieved and controlled flexibly by adjusting the outer printed circuit board layout with minimum effect on passband performance.
The second design is also composed of multicoupled line with loaded capacitors. Besides, the cross-coupled effect is introduced to create two transmission zeros that can be located independently in either the upper or lower stopband. The effect of non-adjacent line coupling on the filter response is properly addressed, and an efficient way to compensate it is proposed. Also, the issue of a frequency-dependent J-inverter in bandpass filter design is well treated. The proposed filter can be implemented using the LTCC process to achieve very compact circuit size, in which the combline line length is as small as λg/29. Two design examples implemented in LTCC demonstrate the controllability of transmission zeros, good selectivity, and compactness.
The proposed multi-functional bandpass filters have the advantages of compact size, high integration level, good selectivity, and simple circuit topology. With the increasing demands on highly integrated, multifunctional, miniaturized, and high-performance RF front-end modules, we believe that the proposed single-to-balanced bandpass filters are highly suitable for modern mobile communication applications.
關鍵字(中) ★ 低溫共燒陶瓷技術
★ 多重耦合線
★ 傳輸零點
★ 單端至平衡帶通濾波器
關鍵字(英) ★ Transmission zero
★ Multicoupled line
★ Single-to-balanced bandpass filter
★ Low-temperature co-fired ceramic(LTCC)
論文目次 論文摘要 I
Abstract II
Contents IV
List of Figures VI
List of Tables XIII
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Literature Survey 2
1-3 Contributions 4
1-4 Organization 5
Chapter 2 Analysis Method of Multicoupled Line 7
2-1 Graph-Transformation Technique for Multicoupled Line Networks Analysis 7
2.1.1 Theory 8
2.1.2 Application 10
2-2 Coupled-Line Bandpass Filter Design with the Aid of Graph Transformation Technique 14
2-2-1 Design Procedure 15
2-2-2 Results 17
2-3 Coupled-Line Bandpass Filters with Controllable Transmission Zeros 19
2-3-1 Design Procedure 21
2-3-2 Results 24
Chapter 3 Single-to-Balanced Multicoupled Line Bandpass Filter 26
3.1 Development of design procedure 26
3.1.1 Balun Response 28
3.1.2 Bandpass Response 31
3.2 Second-Order Balun Filter 33
3.2.1 Design 33
3.2.2 Physical Implementation 37
3.2.3 Size Reduction 46
3.3 Third-Order Balun Filter 49
3.3.1 Design 49
3.3.2 Physical implementation 52
Chapter 4 Single-to-Balanced Combline Bandpass Filter with Two Independently Controllable Transmission Zeros 56
4.1 Circuit Analysis 57
4.1.1 Balun 57
4.1.2. Differential-Mode Half-Circuit 59
4.1.3. Common-Mode Half-Circuit 67
4.2 Design 68
4.3 Physical implementation 76
4.4 Result Comparison 81
Chapter 5 Conclusions 84
5-1 Brief Conclusion 84
5-2 Future Work 86
Reference 88
Publication List 93
Journal Paper: 93
Conference Paper: 93
Appendix A 94
參考文獻 [1] Y. S. Lin, C. C. Liu, K. M. Li, and C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 12, pp. 2718 – 2724, Dec. 2004.
[2] Y. J. Ko, J. Y. Park, J. H. Ryu, K. H. Lee, and J. U. Bu, “A miniaturized LTCC multi-layered front-end module for dual band WLAN (802.11 a/b/g) applications,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun., 2004, pp. 563-566.
[3] D. Kim, D. H. Kim, J. I. Ryu, J. C. Kim, C. D. Park, C. S. Kim, and I. S. Song, “A quad-band front-end module for Wi-Fi and WiMAX applications using FBAR and LTCC technologies ,” in Proc. Asia-Pacific Microwave Conf., Dec. 2008, pp. 1 –4.
[4] P. H. Wu, S. M. Wang, and M. W. Lee, “Wi-Fi/WiMAX dual mode RF MMIC front-end module,” in IEEE RFIC Symp., Jun., 2009, pp. 289-292.
[5] A. Yatsenko, J. Heyen, S. Sakhnenko, B. Vorotnikov, and P. Heide, “Highly-integrated dual-band front-end module for WLAN and WiMAX applications based on LTCC technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun., 2008, pp. 13-16.
[6] J. H. Lee, N. Kidera, G. Dejean, S. Pinel, J. Laskar, and M. M. Tentzeris, “A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 7, pp. 2925 – 2936, Jul. 2006.
[7] D. Kim, H. M. Cho, N.K. Kang, J. C. Park, and J. C. Kim, “LTCC front-end modules for multi-band applications,” in Proc. 36th European Microwave Conf., Sept. 2006, pp. 541-544.
[8] D. Kim, D. H. Kim, J. I. Ryu, and J. C. Kim, “Highly-integrated triplexers for WiMAX applications,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun., 2008, pp. 1091-1094.
[9] M. Buchsbaum, C. Korden, E. Leitgeb, and H. Faulhaber, “Design of a high integrated triplexer using LTCC technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun., 2006, pp. 378-381.
[10] W. S. Tung, Y. C. Chiang, and J. C. Cheng, “A new compact LTCC bandpass filter using negative coupling,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 10, pp. 642–643, Oct. 2005.
[11] J. K. Lee, C. S. Yoo, H. C. Jung, W. S. Lee, and J. K. Yook, “Design of band pass filter for 900MHz ZigBee application using LTCC high Q inductor,” in Proc. Asia-Pacific Microwave Conf., Dec. 2005, pp. 4 –7.
[12] C. W. Tang, C. W. Shen, K. C. Chin, and J. W. Wu., “The method of generating out-band transmission zeros in the LTCC bandpass filter,” in Proc. Asia-Pacific Microwave Conf., Dec. 2005, pp. 1430 –1433.
[13] C.S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H.-Y. Chang, K. Y. Lin, and H.Wang, “Analysis of Multiconductor Coupled-Line Marchand Baluns for Miniature MMIC Design,” IEEE Trans. Microwave Theory Tech., vol. 55, no 6, pp. 1190–1199, Jun. 2007.
[14] W. M. Fathelbab and M. B. Steer, “Tapped marchand baluns for matching applications,” IEEE Trans. Microwave Theory Tech., vol. 54, no 6, pp. 2543–2551, Jun. 2006.
[15] Y. X. Guo, Z. Y. Zhang, and L. C. Ong, “LTCC Full-Matching Marchand Balun,” in Proc. 36th European Microwave Conf., pp.76–78, Sept. 2006.
[16] K. Nishikawa, I. Toyoda, and T. Tokumitsu, “Compact and broadband three-dimensional MMIC balun,” IEEE Trans. Microwave Theory Tech., vol. 47, no 1, pp. 96–98, Jan. 1999.
[17] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau, P.R. Smith, L. Ahlquist, and D. P. Kossives, “Design and characterization of multilayer spiral transmission-line baluns,” IEEE Trans. Microwave Theory Tech., vol. 47, no 2, pp. 1841–1847, Sep. 1999.
[18] O. A. Glubokov and B. N. Shelkovnikov, “Broadband Balun in LTCC Technology Using Vertical Solenoid Coupled Transmission Lines,” in Proc. 7th Int. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services, pp. 452 – 455, Sep. 2005.
[19] C. W. Tang and C. Y. Chang, “A semi-lumped balun fabricated by low temperature co-fired ceramic,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun., 2002, pp. 2201-2204.
[20] S. P. Ojha, G. R. Branner, and B. P. Kumar, “A miniaturized lumped-distributed balun for modern wireless communication systems,” in Proc. IEEE Midwest Circuits and Systems Symp., Aug. 1996, pp. 1347-1350.
[21] Y. X. Guo, Z. Y. Zhang, and L. C. Ong, “Design of Miniaturized LTCC Baluns,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun., 2006, pp. 1567-1570.
[22] C. S. Cho and K. C. Gupta, “A new design procedure for single-layer and two-layer three-line baluns,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2514–2519, Dec. 1998.
[23] B. H. Lee, D. S. Park, S. S. Park, and M. C. Park, “Design of new three-line balun and its implementation using multilayer configuration,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 4, pp.1405–1414, Jun. 2006.
[24] M. C. Park, B. H. Lee, and D. S. Park, “A laminated balance filter using LTCC technology,” in Proc. Asia-Pacific Microwave Conf., Dec. 2005, pp. 2974 –2977.
[25] D. W. Yoo, E. S. Kim, and S. W. Kim, “A balance filter with DC supply for Bluetooth module,” in Proc. 35th European Microwave Conf., pp.1405–1414, Oct. 2005.
[26] E. Y. Jung and H. Y. Hwang, “A balun-BPF using a dual mode ring resonator,” IEEE Microwave Wireless Comp. Lett., Vol. 17, no. 9, pp. 652–654, Sept. 2007.
[27] R. Kravchenko, K. Markov, D. Orlenko, G. Sevskiy, and P. Heide, “Implementation of a miniaturized lumped-distributed balun in balanced filtering for wireless applications,” in Proc. 35th European Microwave Conf., Oct. 2005, pp. 1303-1306.
[28] L. K. Yeung and K. L. Wu, “An LTCC balanced-to-unbalanced extracted-pole bandpass filter with complex load,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 4, pp.1512–1518, Apr. 2006.
[29] Y. C. Leong, K. S. Ang, and C. H. Lee, “A derivation of a class of 3-port baluns from symmetrical 4-port networks,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2002, pp.1165–1168.
[30] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming balun,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 3, pp. 1009–1017, Mar. 2003.
[31] C. C. Chuang and C. L. Wang, “Design of three-pole single-to-balanced bandpass filters,” in Proc. 36th European Microwave Conf., Sept. 2006, pp. 1193-1196.
[32] S. Sakhnenko, K. Markov, D. Orlenko, A. Yatsenko, B. Vorotnikov, G. Sevskiy, and P. Heide, “LTCC balanced filter based on a transformer type balun for WLAN 802.11 a application,” in Proc. 37th European Microwave Conf., Oct. 2007, pp. 434-437.
[33] C. H. Wu, C. H. Wang, S. Y. Chen, and C. H. Chen, “Balanced-to-unbalanced bandpass filters and the antenna application,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 11, pp. 2474–2482, Nov. 2008.
[34] M. Tamura, T. Ishizaki, and M. Holt, “Design and analysis of vertical split ring resonator and its application to unbalanced-balanced filter,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 1, pp. 157–164, Jan. 2010.
[35] M. Tamura, T. Yang, and T. Itoh, “Very compact and low-profile LTCC unbalanced-to-balanced filters with hybrid resonators,” IEEE Trans. Microwave Theory Tech., vol. 56, Apr. 2011.
[36] K. T. Chen and S. J. Chung, “A novel compact balanced-to-unbalanced low-temperature co-fired ceramic bandpass filter with three coupled lines configuration,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 7, pp. 1714–1720, July 2008.
[37] H. M. Lee and C. M. Tsai, “Exact synthesis of broadband three-line baluns,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 1, pp. 140–148, Jan. 2009.
[38] C. L. Tsai and Y. S. Lin, “Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 12, pp. 2902–2912, Dec. 2008.
[39] C. L. Tsai and Y. S. Lin, “Analysis and design of single-to-balanced combline bandpass filters with two independently controllable transmission zeros in LTCC technology,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 11, pp. 2878–2887, Nov. 2010.
[40] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance-Matching Networks, and Coupling Structures. Norwood, MA: Artech House, 1980.
[41] R. Sato and E. G. Cristal, “Simplified analysis of coupled transmission-line Networks,” IEEE Trans. Microwave Theory Tech., vol. MTT-18, no. 3, pp. 122–131, Mar. 1970.
[42] P. I. Richards, “Resistor-transmission-line circuits,” Proc. IRE, vol. 36, pp. 217–220, Feb. 1948.
[43] G. L. Matthaei, “Comb-line band-pass filters of narrow or moderate bandwidth,” Microwave J., vol. 6, pp. 82–91, Aug. 1963.
[44] E. G. Cristal, “Band-pass spurline resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-14, pp. 296–297, June 1966.
[45] C. W. Tang and S. F. You, “Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 2, pp. 717–723, Feb. 2006.
[46] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application. New York: Wiley, 2001.
[47] L. A. Robinson, “Wideband interdigital filters with capacitively loaded resonators,” in IEEE G-MTT Int. Microwave Symp. Dig., pp. 33-37, 1965.
[48] DEA202450BT-7077A1, TDK Corp., Tokyo, Japan. [Online]. Available: http://www.tdk.com/ [TDK/Product Catalog/RF Components/Multilayer Bandpass Filters (Balance output type)]
[49] DBF81H904, Soshin Electric Co., LTD, Tokyo, Japan. [Online]. Available: http://www.soshin-ele.com/product/index.html (Soshin/Filters/Multilayered dielectric Balanced filters)
[50] C. W. Tang, Y. C. Lin, and C. Y. Chang, “Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 10, pp. 2112–2118, Oct. 2003.
[51] C. W. Tang, “Design of four-ordered cross-coupled bandpass filters with low-temperature co-fired ceramic technology,” IET Microwave, Antennas Propag., vol. 3, no. 3, pp. 402–409, April 2009.
[52] R. Levy and J. D. Rhodes, “A comb-line elliptic filter,” IEEE Trans. Microwave Theory Tech., vol. 19, no. 1, pp. 26–29, Jan. 1971.
[53] R. Levy and P. Petre, “Design of CT and CQ filters using approximation and optimization,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 12, pp. 2350–2356, Dec. 2001.
[54] W. M. Fathelbab and M. B. Steer, “A reconfigurable bandpass filter for RF/microwave multifunctional systems,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 1111–1116, Mar. 2005.
指導教授 林祐生(Yo-shen Lin) 審核日期 2011-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明