博碩士論文 956201016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.141.192.219
姓名 楊承道(Cheng-tao Yang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 氣候變遷對西北太平洋熱帶氣旋的影響
(Tropical cyclone changes in the Western North Pacific under climate change simulations)
相關論文
★ 利用MM5模式評估台灣地區風能蘊藏量之研究★ 全球氣候模式(NCAR CCM2/3)模擬東亞氣候變遷之研究
★ MM5對東亞地區梅雨季的模擬及其可預報度之研究★ 東亞大氣年際變化之研究與模擬
★ 地表特性對台灣及鄰近地區氣候影響之模擬研究★ 東亞地區降水年際變化之研究
★ 華南春季冷鋒之個案研究★ 北極震盪(Arctic Oscillation, AO)對東亞地區氣候系統影響之研究
★ 地表特性對台灣地區氣候的影響★ 氣候異變(1979年)前後期夏季西北太平洋副高西伸東退之特性研究
★ 西北太平洋副熱帶高壓西伸東退對西北太平洋熱帶氣旋氣候特性的影響★ 北極震盪(Arctic Oscillation, AO)的波動特性與機制探討
★ 臺北測站之統計降尺度定量降水研究★ 西北太平洋地區颱風活動隨全球暖化的改變
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用德國馬克斯-普朗克氣象研究所(Max Plank Institute for Meteorology)發展出來的第四版海-氣耦合模式ECHAM4,對IPCC訂出的溫室氣體排放A2、B2情境,模擬現在與未來氣候變遷之結果進行分析。
從模擬結果發現,在溫室氣體濃度上升的情況下,西北太平洋的大尺度氣候場會有下列改變:(1)海溫會逐漸上升,(2)副熱帶高壓脊西伸,(3)中、低對流層相對濕度增加,(4)對流層的溫度上升,(5)沃克(Walker)環流減弱,(6)菲律賓附近的季風槽減弱,(7)南海附近的垂直風切減弱等現象。此外,比較A2、B2情境的氣候場變化差異,發現兩者皆呈現一致的變化趨勢,不同的是A2情境的變化量會比B2情境還大一些。
分析從模式中定義出的熱帶氣旋個案,結果發現西北太平洋熱帶氣旋的個數會隨著溫室氣體濃度上升而減少,這可能和對流層增溫以及沃克(Walker)環流的減弱,加上海溫上升使洋面蒸發作用較旺盛,使水汽更容易在大氣中停留,再加上中、下對流層相對濕度的增加,讓大氣處於暖、濕的狀態,促使上、下層的溫度遞減率減少,垂直穩定度增加,使對流不易產生有關。
也發現熱帶氣旋往北轉往高緯區的路徑有往西南偏之情形,可能原因為副熱帶高壓脊的西伸與較高緯區的東風駛流距平(即西風減弱)所造成。
此外,還發現熱帶氣旋的生命期有隨溫室氣體濃度的增加而增長的趨勢,至於熱帶氣旋的風速與渦度強度則是呈現減弱的情形,但由於熱帶氣旋生命期增加與強度的減弱現象,可能會受到大尺度氣候場的年際變化以及使用的模式解析度和研究的方法不同之影響而有所差異,因此還需更進一步研究。
摘要(英) This study uses the Max Plank Institute (MPI) coupled model (ECHAM4/OPYC3) to simulated the IPCC A2 and B2 global warming scenarios. We discuss the total number, lifetime, intensity, track variation of tropical cyclones under different climate scenarios in the Northwest Pacific Ocean.
According to the results, we find that when greenhouse gases increase, there are several changes occured in the Northwest Pacific Ocean. (1) Sea surface temperatures increase. (2) Subtropical high ridge extends westward. (3) Relative humidities of lower and middle troposphere increase. (4) Temperatures increase in troposphere. (5) Walker circulation weakens. (6) Monsoon trough weakens in the South China Sea and Philippines region, and vertical wind shear weakens over the South China Sea. In addition, comparing the difference between A2 and B2 scenarios, we find that the changes of climate trend in B2 are almost the same as A2, but the amplitude in A2 is larger.
Furthermore, we find that the total number of tropical cyclones decrease in the Western North Pacific under the A2 and B2 simulations. This reduction is associated with the increase of sea surface and air temperatures. The weakening of Walker circulation will increase water vapor in atmosphere. These processes will make atmosphere warmer and more moisture. This in turn increases the static stability of the troposphere. The process restrict the convection activity and hence reduce the total number of tropical cyclones.
In addition, the northeastern recurving tracks of tropical cyclones shift southwesterly. This attributes to westward extend of the subtropical high ridge and weakening of westerly steering flow in middle latitude.
Finally, the lifetime and intensity variation of tropical cyclones under the A2 and B2 climate change simulations may be affected by the differences in method, model and atmosphere interannual variability. In these part of tropical cyclone characters, we still need further study to prove.
關鍵字(中) ★ 氣候變遷
★ 熱帶氣旋
關鍵字(英) ★ climate change
★ tropical cyclone
論文目次 中文摘要.........................i
英文摘要 ........................ii
致謝 ........................iv
目錄 ........................v
表目錄 .......................vii
圖目錄 ...................... viii
第一章 緒論 ................... 1
1.1 前言與回顧................... 1
1.2 研究動機與目的................. 3
1.3 論文結構.................... 4
第二章 資料來源與研究方法.............. 5
2.1 資料來源.................... 5
2.2 模式簡介.................... 6
2.3 如何追蹤氣旋—Track模式的原理與使用.......7
2.4 如何定義模式中的熱帶氣旋............ 9
第三章 模式的特性.................11
3.1 海溫......................11
3.2 海平面氣壓...................12
3.3 相對溼度....................13
3.4 降水......................13
3.5 模式特性對熱帶氣旋路徑模擬的影響........14
第四章 A2、B2氣候變遷情境下大尺度氣候場的變化...16
4.1 海溫......................16
4.2 海平面氣壓...................17
4.3 相對溼度....................19
4.4 對流層溫度................... 21
第五章 氣候變遷下熱帶氣旋特性的變化以及變化原因... 24
5.1 熱帶氣旋數目的變化............... 24
5.2 熱帶氣旋生命期的變化.............. 30
5.3 熱帶氣旋強度的變化............... 31
5.4 熱帶氣旋路徑的變化............... 33
第六章 結論與未來展望................ 35
參考文獻........................ 39
附錄A..........................47
附錄B..........................51
附錄C..........................52
附表圖......................... 53
參考文獻 吳郁娟,2005:全球暖化影響之下日降水與極端降水事件變化之探討。國立台灣師範大學地球科學系碩士論文。
Akyildiz, V., 1984: Systematic errors in the behaviour of cyclones in the ECMWF operational models. Tellus, 37A, 297-308.
Arkin, P. A., and B. N. Meisner, 1987: The relationship between largescale convective rainfall and cold cloud over the western hemisphere during 1982-84. Mon. Wea. Rev., 115, 51-74.
Bengtsson L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175-196.
——, ——, and ——, 1996 : Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57–73.
——, K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. J. Luo, and T. Yamagata., 2007 : How may tropical cyclones change in a warmer climate? Tellus, V59A, 539-561.
Brinkop, S., and E. Roeckner, 1995: Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus, 47A, 197–220.
Camargo, S. J., and S. E. Zebiak, 2002: Improving the detection abd tracking of tropical cyclones in atmospheric general circulation models. Amer. Meteor. Soc., 17, 1152-1162.
——, and A. H. Sobel, 2005 : Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.
Chan J. C. L., 1985 : Tropical cyclone activity in the northwest Pacific in relation to the El Nino/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599–606.
——, 2006 : Comments on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science, 311, 1713b.
Chang, A. T., L. S. Chiu, and G. Yang, 1995: Diurnal cycles of oceanic precipitation from SSM/I data. Mon. Wea. Rev., 123, 3371-3380.
Chen, T. C., S. P. Weng, N. Yamazaki, and S. Kiehne, 1998 : Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 1080–1090.
Chiu, L. S., A. Chang, and J. E. Janowiak, 1993: Comparison of monthly rain rates derived from GPI and SSM/I using probability distribution functions. J. Appl. Meteor., 32, 323-334.
Dai, T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the twentieth and twenty-first centuries simulatedby the NCAR climate system model. J. Climate, 14, 485-519.
Emanuel, 1987 : The dependence of hurricane intensity on climate. Nature, 326, 483–485.
——, 1988 : The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.
——, 2005 : Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688.
Endlich, R. M., D. E. Wolf, D. J. Hall, and A. E. Brain, 1971: Use of a pattern recognition technique for determining cloud motions from sequences of satellite photographs. J. Appl. Meteor., 10, 105-117.
Evans, 1992 : Comment on “Can existing climate models be used to study anthropogenic changes in tropical cyclone climate?” Geophys. Res. Lett., 19, 1523–1524.
Ferraro, R. R., N. C. Grody, and G. F. Marks, 1994: Effects of surface conditions on rain identification using SSM/I. Remote Sens. Rev., 11, 195-209.
Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the Earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos., 53, 35-62.
Frank, W. M., 1977: The structure and energetic of the tropical cyclone Ι. Storm structure. Mon. Wea. Rev., 105, 1119-1135.
——, W. M., 1987 : Tropical cyclone formation. A Global View of Tropical Cyclones, Office of Naval Research, 53–90.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
——, 1975: Tropical cyclone genesis. Dept. of Atmos. Sci. Paper No. 234, Colorado State University, Fort Collins, CO, 121pp. [Available from Dept. of Atmospheric Science, Colorado State University, Ft. Collins, CO 80523.]
——, 1979: Hurricanes: their formation, structure and likely role in the general circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.
——, 1981: Recent Advances in Tropical Cyclone Research from Rawinsonde Composite Analysis. World Meteorological Organization, 407 pp.
Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 7423-7435.
Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1992 : Tropical Disturbances in a GCM, Clim. Dyn., 8, 247–257.
Held, I. M., and B. J. Soden, 2006 : Robust responses of the hydrological cycle to global warming. J. Climate , 19, 5686-5699.
Hodges, K. I., 1994 : A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573-2586.
——, and C. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 2821-2837.
——, 1998 : Feature-point detection usind distance transforms: Application to tracking tropical convective complexes. Mon. Wea. Rev., 126, 785-795.
Holland, Ed., 1993: Tropical cyclone motion. Global Guide to Tropical Cyclone Forecasting, World Meteorological Organization Tech. Document WMO/TD 560, Tropical Cyclone Programme Rep. TCP-31, Geneva, Switzerland. [Available online at http://www.bom.gov.au/bmrc/pubs/tcguide/globapguidepintro.htm.]
——, G. J., 1995 : Scale interactions in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 57–79.
——, G. J. 1997 : The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.
Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041-1061.
Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Katenberg, and K. Maskell, Eds., 1996 : Climate Change 1995 : The Science of Climate Change Contribution of Working Group Ι to the Second Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, 572pp.
——, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881pp.
IPCC ,2000: A Special Report of emissions scenarios. The Science of Climate Change Contribution of Working Group Ⅲ of the Intergovernmental Panel on Climate Change [Nebojsa N., D. Ogunlade, D. Gerald, G. Arnulf, K. Tom, L. L. R. Emilio, M. Bert,
M. Tsuneyuki, P. William, P. Hugh, S. Alexei, S. Priyadarshi, S. Robert, W. Robert, D. Zhou (eds.)]. Cambridge University Press, 5pp.
IPCC, 2007: Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 267 pp.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437-472.
Klotzbach, P. J., 2006 : Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett. 33, L10805, doi:10.1029/2006GL025881.
Knutson, T. R., and S. Manabe, 1995: Time mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Climate, 8, 2181–2199.
——, and R. E. Tuleya, 2001 : Impact of CO2-induced warming on hurricane intensities and simulated in a hurricane model with ocean coupling. J. Climate, 14, 2458–2468.
König, W., R. Sausen, and F. Sielmann, 1992: Objective identification of individual cyclones. CAS/JSC Working Group on Numerical Experimentation; Research Activities in Atmospheric and Oceanic Modeling, Report No. 17, WMO/TD No. 467,7.40-7.41.
Lambert, S. J., 1988: Acyclone climatology of the Canadian Center general circulation model. J. Climate, 1, 109-115.
Lander, 1994 : An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651.
Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006 : Can we detect trends in extreme tropical cyclones? Science, 313, 452–454.
Le Treut, H., and E. Kalnay, 1990: Comparison of observed and simulated cyclone frequency distribution as determined by an objective method. Atmosfera, 3, 57-71.
Leese, J. A., and C. S. Novak, 1971: An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlaiton. J. Appl. Meteor., 10, 118-132.
Lighthill, J., G. J. Holland, W. M. Gray, C. Landsea, K. Emanuel, G. Craig, J. Evans, Y. Kurihara, and C. P. Guard, 1994 : Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 2147–2157.
Miller, M. J., T. N. Palmer, and R. Swinbank, 1989: Parameterization and influence of Sub-grid scale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84-109.
Morcrette, J. J., L. Smith, and Y. Fouquart, 1986: Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Beitr. Phys. Atmos., 59, 455-469.
Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155-166.
Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department, Tech. Memo. No. 206, European Centre for Medium- range Weather Forecasts, 41 pp. Available from ECMWF
Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer-isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr., 23, 808-829.
Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and co-authors., 2006 : Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analysis. J. Meteorol. Soc. Jap. 84, 259-276.
Reed, R. J., A. Hollingsworth, W. A. Heckley, and F. Delsol, 1986: An evaluation of the performance of the ECMWF operational forecasting system in analyzing and forecasting tropical easterly wave disturbances Part I: Synoptic investigation, ECMWF Tech. Rep. 58, 1-74.
Roeckner E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Duemenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report of the Max-Planck-Institute, Hamburg, 218, 90.
Rudolf, B., H. Hauschild, W. Rueth, and U. Schneider, 1994:Terrestrial precipitation analysis: Operational method and required density of point measurements. NATO ASI Series, 126, 173-186.
Ryan, B. F., I. G. Watterson, and J. Evans, 1992 : Tropical cyclone frequencies inferred from Gray’s Yearly Genesis Parameter: Validation of GCM tropical climate. Geophys. Res. Let., 19, 1831–1834.
Sabre, M., K. I. Hodges, K. Laval, J. Polcher, and F. Decalmand, 2000: Sinulation of monsoon disturbances in the LMD GCM. Mon. Wea. Rev., 128, 3752-3771.
Salari, V., and I. K. Sethi, 1990: Feature point correspondence in the presence of occlusion. IEEE Trans. PAMI, 12, 87-91.
Sethi, I. K., and R. Jain, 1987: Finding trajectories of feature points in a monocular image sequence. IEEE Trans. PAMI, 9, 56-73.
Simmons, A. J., and J. K. Gibson, 2002: The ERA-40 project plan. ERA-40 Project Report Series No. 1, ECMWF, Shinfield Park, Reading RG2 9AX, UK., 63 pp.
Spencer, R. W., 1993: Global Oceanic precipitation from the MSU during 1979-91 and comparisons to other climatologies. J.Climate, 6, 1301-1326.
Sriver, R. L., and M. Huber, 2006 : Low frequency variability in globally integrated tropical cyclone power dissipation. Geophys. Res. Lett., 33, L11705 doi:10.1029/2006GL026167.
Stowasser, M., Y. Wang, and K. Hamilton, 2007 : Tropical cyclone change in the Western North Pacific in a Global warming scenario. J. Climate, 20, 2378-2396.
Streten, N. A., and A. J. Troup, 1973: A synoptic climatology of satellite observed cloud vorticies over the Southern Hemisphere. Quart. J. Roy. Meteor. Soc., 99, 56-72.
Sugi, M., A. Noda, and N. Sato, 1997 : Influence of global warming on tropical cyclone climatology : An experiment with the JMA global model. WMO/TD-No. 792.
——, and N. Sato, 2002 : Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteorol. Soc. Jpn., 80, 249–272.
Thorncroft, C., and K. I. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 1166-1179.
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779-1800.
Walsh, K. J. E., and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13, 3029–3036.
——, M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307–2314.
Wang, B., and J. C. L. Chan, 2002 : How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658.
Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang, 2005 : Change in tropical cyclone number, duration, and intensity in a warming environment. Science, 309. 1844-1846.
Wilheit, T. J., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of he monthly rainfall indices from microwave radiometric measurements sing probability distribution functions. J. Atmos.Oceanic Technol., 8, 118-136.
Williamson, D. L., and P. J. Rasch, 1994: Water vapor transport in the NCAR CCM2. Tellus, 46A, 34-51.
Wu, L., and B. Wang, 2004︰Assessing Impacts of Global Warming on Tropical Cyclone Tracks. J. Climate, 17, 1686-1698.
Xie, P., and P. A. Arkin, 1997: Global Precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.
Yoshimura, J., S. Masato, and A. Noda, 2006 : Influence of greenhouse warming on tropical cyclone frequency. J. Meteorol. Soc. Jpn., 84(2), 405-428.
指導教授 曾仁佑(Ren-yow Tzeng) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明