博碩士論文 956202015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.176.125
姓名 張志偉(Chih-wei Chang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 利用時頻分析技術檢視土壤非線性反應
(Recognition of nonlinear site response applying the time-frequency analysis method)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 台灣潛勢地震之發生機率評估★ 加速度地動潛勢預估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在地震觀測上,利用雙站頻譜比法得知強、弱震之共振主頻變化以及壓抑放大現象可以判斷土壤的非線性反應。而本篇文章則是利用時頻分析技術,以共振主頻隨時間之變化來探討局部地區土層之場址效應,尤其是強震與弱震間土壤共振主頻之差異。
  本研究使用台灣羅東LSST井下陣列於1985~1987年間所收到之強地動資料,分別挑選強震(最大加速度值大於150gal)、弱震(最大加速度值小於80gal)資料,以及日本神戶港Port Island井下陣列於1995年發生的Hyogo-ken Nanbu主震(最大加速度值為555gal)和餘震資料,及1994年弱震(最大加速度值小於15gal)資料。利用短時傅氏轉換(Short Time Fourier Transform)、小波分析(Wavelet Analysis)及雙站頻譜比法(Spectral Ratio Method)來探討區域土壤共振主頻隨時間之變化。並利用前人之研究結果得知羅東LSST區域強、弱震之共振主頻分別約為2Hz及3Hz附近,藉此評估本研究方法能否觀察到土壤受強震作用之時序影響,由線性到非線性反應、再由非線性到線性反應其主頻變化之可行性。
  在LSST井下陣列研究結果中,本研究將各個時間窗格之頻譜比值都做了正規化之動作以突顯共振主頻隨時間之變化。利用此法分析弱震之結果,從地震發生到結束可以清楚地看到共振主頻隨時間之變化均在3Hz附近,為一定值,驗證了土壤在弱震作用下為線性反應。而在強震之反應上可以清楚地看到震波在一開始共振主頻落在3Hz,與弱震之共振主頻相同,此時土壤為線性反應;在剪力波進來後,共振主頻掉至2Hz以下,此時土壤出現非線性反應;在剪力波通過後,共振主頻即回復至2.5~3Hz,此時土壤特性恢復為與弱震相同之線性反應。
  在日本Port Island井下陣列研究結果中,強震之共振主頻在剪力波過後之值均在2Hz以下,並未回復至弱震之共振主頻4Hz,這驗證了前人之研究結果,此地震在此區域產生了液化現象,使土壤之本質與特性不復在,故共振主頻並不會回復至土壤線性反應時之主頻值。
本研究亦初步探討使用近年來廣泛研究與應用之HHT(Hilbert Huang Transform)方法來分析LSST井下陣列地震記錄,其結果與上述兩方法所獲得的結果並不相同,在弱震反應上,共振主頻值並不為一定值,呈現上下跳動外其值大都偏低;在強震反應上,並無發現共震主頻在剪力波進來前後有明顯之差異。
整體而言,利用時頻分析技術確實可以觀察到局部土壤的非線性反應隨時間的變化,而如何運用HHT方法分析時變的土壤特性需更進一步深入之研究。
摘要(英) The predominant frequency decrease and de-amplification of strong motion spectra at a soil site are recognized as occurring nonlinear site effects. In this study, the strong and weak motion events recorded by the LSST borehole array in Taiwan and the Port Island borehole array in Japan are analyzed by spectral ratio method with the Short Time Fourier Transform (STFT) and Wavelet Analysis. The spectral ratios of surface to borehole sites are calculated to analyze the predominant frequency variations with time. We knew the predominant frequency of the week motion respectively is 2-3 Hz and 3-4 Hz by the previous results for the LSST array and the Port Island array. Then we estimate the practicability of the proposed methods to show the soil nonlinear response during the time history of the strong motion events.
For the LSST array in Taiwan, the predominant frequency varies with time from beginning to end of the week motion is about 3 Hz obviously using this method and it demonstrated that the soil response is linear on the weak motion. On the other situation, we can see the predominant frequency of the strong motion event is 3 Hz at the initial portion and it’s the same with the weak motion result so it shows linear soil response at this time period. Then the predominant frequency of the shear wave is decrease to 2 Hz during the strong motion portion, the findings indicate that the soil response is nonlinear. At the later portion after the strong motion portion, the predominant frequency returns to 2.5-3 Hz immediately and the soil response recovers to linear condition.
In the result of Port Island array in Japan, the predominant frequency varies with time from beginning to end of the weak motion is about 3.5-4 Hz. On the case of 1995 Kobe earthquake, the predominant frequency after the shear wave is decreasing less than 2 Hz on the mainshock because the soil is liquefied. And 3 hours after the mainshock, the predominant frequency returns to about 3 Hz which is less than 3.5-4 Hz, and this shows the soil characteristic can’t return to the original situation due to the liquefaction effect.
In this study, spectral ratio method with the time-frequency analysis was used to observe the variations of predominant frequency with time on the strong motion event. Much remains to be done, then, but we anticipate that the same results will be generated by the HHT method to improve the resolution of the time and frequency domains.
關鍵字(中) ★ 共振主頻
★ 土壤非線性反應
★ 時頻分析
關鍵字(英) ★ Predominant frequency
★ Nonlinear site response
★ time-frequency analysis
論文目次 中文摘要.......................................i
英文摘要......................................ii
誌謝.........................................iii
目錄..........................................iv
圖目.........................................vii
表目..........................................xi
第一章 緒論..................................1
1.1 研究動機與目的............................1
1.2 文獻回顧..................................3
1.1.1 土壤非線性之文獻回顧....................3
1.1.2 小波理論之文獻回顧......................5
1.3 本文內容..................................6
第二章 研究區域與地質背景.....................7
2.1 台灣羅東LSST 井下陣列.....................7
2.1.1 地質概況................................7
2.1.2 地下速度構造............................8
2.1.3 LSST 井下陣列...........................9
2.1.4 資料選取...............................11
2.2 日本神戶港Port Island 井下陣列...........11
第三章 研究原理與方法........................27
3.1 土壤非線性反應...........................27
3.1.1 大地工程方面...........................27
3.1.2 地震觀測方面...........................29
3.2 研究方法.................................29
3.2.1 傅氏振幅譜.............................30
3.2.2 短時傅氏轉換...........................30
3.2.3 小波分析...............................31
3.2.4 雙站頻譜比法...........................33
第四章 研究流程..............................39
4.1 STFT.....................................39
4.2 小波分析.................................40
第五章 結果與討論............................46
5.1 STFT處理之結果...........................46
5.1.1 羅東LSST井下陣列.......................46
5.1.2 日本神戶港Port Island 井下陣列........48
5.2 小波分析處理之結果.......................49
5.2.1 羅東LSST井下陣列.......................49
5.2.2 日本神戶港Port Island 井下陣列........50
5.3 HHT處理之結果............................51
5.4 綜合討論.................................53
第六章 結論.................................102
參考文獻.....................................104
附錄一.......................................109
附錄二.......................................119
參考文獻 英文部分
Aguirre, J. and Irikura, K., “Nonlinearity, liquefaction, and velocity variation of soft soil layers in Port Island, Kobe, during the Hyogo-ken Nanbu earthquake,” Bull. Seism. Soc. Am. 87, 1244-1258, 1997.
Aki, K., “Local site effects on strong motion,” Earthquake Engineering & Soil Dynamics, GT Div/ASCE, Park city, Utah, June 27-30, 103-155., 1988
Aki, K. and Chin, B. H., “Local site effects on weak and strong ground motion,” Int. Sym. On Earthq. Disaster Prevention, Mexico City, Mexico, Vol. I, 198-211, 1992.
Battle, G., “A block spin construction of ondelettes, Part I: Lemarie functions,” Communication on Mathematics and Physics, 110, pp. 601-615, 1987.
Beresnev, I. A., Wen, K. L., and Yeh, Y. T., “Nonlinear soil amplification:Its corroboration in Taiwan,” Bull. Seism. Soc. Am., 85, 496-515, 1995a.
Beresnev, I. A., Wen, K. L., and Yeh, Y. T., “Seismological evidence for nonlinear plastic ground behavior during large earthquakes,” Soil. Dyn. Earthquake Eng., 14, 103-114, 1995b.
Boore, D. M., Seekins, L., and Joyner, W. B., “Peak acceleration from the 17 October 1989 Loma Prieta earthquake,” Seism. Res. Lett. 60, 151-166, 1989.
Borcherdt, R. D., “Influence of local geology in the San Francisco Bay region, California, on ground motion generated by the Loma Prieta earthquake of October 17, 1989,” Proc. Int. Symp. Safety and Urban Life and Facilities (Tokyo, Japan), 1990.
Chang, C. Y., Mok, C. M., Power, M. S., Tang, Y. K., Tang, H. T. and Stepp, J. C., “Equivalent linear versus nonlinear ground response analyses at Lotung seismic experiment site,” Proc. Of 4th U.S. National Conference on Earthquake Engineering, Palm Springs, California, Vol. 1, 327-336, 1990.
Chang, C. Y., Mok, C. M., Power, M. S., Tang, Y. K., Tang, H. T. and Stepp, J. C., “Development of shear modulus reduction curves based on Lotung downhole ground motion data,” Proc. 2nd Int. Conf. Recent Advances in Geotechnical Earthquake Eng. Soil Dyn. Paper No. 1.44, 111-118, 1991.
Chen, C.H., Huang, J. H. and Chen, L. Y., “Comparison of geological profiles obtained from different exploration methods,” Bulletin of the College of Engineering, N.T.U., No. 49, 31-48, 1990.
Chin, B. H. and Aki, K., “Simultaneous determination of source, path and recording site effects on strong ground motion during the Loma Prieta earthquake-a preliminary result on pervasive nonlinear site effect,” Bull. Seism. Soc. Am. 81, 1859-1884, 1991.
Darragh, R. B. and Shakal, A. F., “The site response of two rock and soil station pairs to strong and weak ground motion, ” Proc. 4th Intl. Conf. Seismic Zonation, Vol. 3, 359-366, 1991a.
Darragh, R. B. and Shakal, A. F., “The site response of two rock and soil station pairs to strong and weak ground motion,” Bull. Seism. Soc. Am. 81, 1885-1899, 1991b.
Development Bureau, Kobe City, “Report of the soil investigation and installment of strong motion accelerograph (in Japanese),” 1991.
Duncan, J. M. and Chang, C. Y., “Nonlinear analysis of stress and strain in soils,” ASCE, J. of the Soil Mech. And Foundations Division, 96, SM5, 1629-1651, 1970.
Esteva, L., “Microzoning: models and reality,” Proc. 6th World Congr. Earthquake Eng. (New Dehli), 1977.
Finn, W. D. Liam, Lee, K. W. and Martin, G. R., “An effective stress model for liquefaction,” ASCE, J. of the Soil Mech. And Foundations Division, 103, GT6, 517-533, 1977.
Grossmann, A., Morlet, J., “Decomposition of hardy functions into square integral wavelets of constant shape,” SIAM J. Math. Anal.15 (4), 736-783, 1984.
Gutenberg, B., “Effects of ground on earthquake motion,” Bull. Seism. Soc, Am. 47, 221-250, 1957.
Hardin, B. O. and Drnevich, V. P., “Shear modulus and damping in soil: design equations and curves,” J. Soil Mech. Foundations Div. ASCE, 12, 537-564, 1972.
HCK, “Geophysical survey report of Lo-Tung project for Taiwan Power Company,” HCK Geophysical Company, 1986.
Huang, N.E., Shen, Z., Long, S. R., Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C., and Liu, H. H., “The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis,” Proc. Roy. Soc. London, A454, 903-995, 1998.
Jarpe, S. P., Cramer, C. H., Tucker, B. E. and Shakal, A. F., “A comparison of observation of ground response to weak and strong ground motion at Coalinga, California,” Bull. Seism. Soc. Am. 78, 421-435, 1988.
Jarpe, S. P., Jutchings, L. J., Hauk, T. F. and Shakal, A. F., “Selected strong- and weak-motion data from the Loma Prieta earthquake sequence.” Bull. Seism. Soc. Am. 60, 167-176, 1989.
Lemarie, P. G., “Ondelletes a localisation exponentielles,” Indian Journal of Pure & Applied Mathematics, 67, 227-236, 1988.
Mallat, S., “Multiresolusion approach to wavelets in computer vision,” in Wavelets,Time-Frequency Methods and Phase Space, Combes, J. M. et al. eds. Springer, 313-327, 1989a.
Mallat, S., “A theory for multiresolusion signal decomposition: the wavelet representation,” IEEE Transaction. Pattern Analysis and Machine Intelligence, 11, 674-693, 1989b.
Misiti, M., Yves Misiti, Georges Oppenheim and Jean-Michel Poggi, “Wavelet toolbox for use with MATLAB,” 1996.
Mohammadioun, B. and Pecker, A., “Low- frequency transfer of seismic energy by superficial soil deposits and soft rocks,” Earthq. Eng. Struc. Dyn., 12, 537-564, 1984.
Rogers, A. M., Borcherdt, R. D., Covington, P. A. and Pekins, D. M., “A comparative ground response study near Los Angles using recordings of Nevada nuclear tests and the 1971 San Fernando earthquake,” Bull. Seism. Soc. Am. 74, 1925-1949, 1984.
Rogers, A. M., Tinsley, J. C. and Borcherdt, R. D., “Predicting relative ground response. In: J.I. Ziony (Editor), Evaluating Earthquake Hazards in the Los Angles region,” US Geol. Surv. Prof. Paper 1360, 221-248, 1985.
Sato, K., Kokusho, T., Matsumoto, M. and Yamada, E., “Nonlinear sesmic response and soil property during strong motion,” Special Issue of Soil and Foundations, Japan Geotech. Soc., 41-42, Jan, 1996.
Satoh, T., Sato, T. and Kawase, H., “Nonlinear behavior of soil sediments identified by using borehole records observed at the Ashigara Valley, Japan,” Bull, Seism. Soc. Am. 85, 1821-1834, 1995.
Satoh, T., Horike, M., Takeuchi, Y., Uetake, T. and Suzuki, H., “Nonlinear behavior of scoria soil sediments evaluated from borehole records in eastern Shizuoka prefecture, Japan,” Earthquake Eng. Struct. Dyn. 26, 781-795, 1997.
Shannon, C. E., “Communication in the presence of noise,” Proc. IRE, 37, 10-21, 1949.
Wang, C. Y., Yeh, Y. T., Cheng, S.C., “Wavetype identification and interpretation of the seismic data in SMART1-LSST array,” Proc. of Workshop on Validation of Seismic SSI Analysis Technique using Lotung Experiment Data. Calif., USA, 1987.
Wen, K.L. and Yeh, Y.T., “Seismic velocity structure beneath the SMART1 array,” Bull. Inst. Earth Sci., Academia Sinica, 4, 51-72, 1984.
Wen, K. L, Beresnev, I. A., and Yeh, Y. T., “Nonlinear soil amplification inferred from downhole strong seismic motion data,” Geophys. Res. Lett., 21, 2625-2628, 1994.
Wen, K. L., Beresnev, I. A. and Yeh, Y. T., “Investigation of non-linear site amplication at two downhole strong ground motion arrays in Taiwan,” Earthq. Eng. Struct. Dyn., 24, 313-324, 1995.
江新春,「宜蘭平原之震測」,礦業技術,第14卷,第6期,215-221,1976。
何春蓀,台灣地質概論,中華民國經濟部,1994。
李建平,利用井下陣列強地動資料研究土壤非線性反應。國立中央大學碩士論文,1998。
詹新甫,「宜蘭地區第三紀之地質」,礦業技術,第14卷,第7期,252-257,1976。
溫國樑,羅東地區之強地動特性,國立中央大學博士論文,1988。
指導教授 溫國樑(Kuo-Liang Wen) 審核日期 2008-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明