博碩士論文 956203007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.215.79.116
姓名 李昆翰(Kun-Han Lee)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 Ring-beam粒子分布之電漿不穩定性模擬研究
(A simulation study of plasma instabilities in the presence of energetic particles with a ring-beam distribution)
相關論文
★ Fast Magnetosonic Shocks in the interplanetary Space and Magnetosphere★ 電子環射束產生之迴旋脈射不穩定性:電磁波的產生與電子加速
★ 非對稱電流片磁重聯產生之不連續面與膨脹波
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文將利用粒子模擬針對各種ring-beam粒子分佈的電漿不穩定性,做一系列的討論。根據Yoon et al. (2007) 所發表的研究成果,ring-beam粒子分佈很有可能成為X-mode與O-mode以及Z-mode等波的強波源。但是,本論文的研究結果發現,ring-beam粒子分佈中,沿磁場方向的粒子速度(beam component),將造成哨聲波的激發,其成長率與飽和能量亦相當高。只有當這些高能粒子的平均速度之pitch angle接近90度時,才能讓X-mode波能有足夠的時間被增強,而避免讓哨聲波在短時間內破壞了原始的粒子分佈。此外,我們亦發現在某些情況下,ring-beam粒子分佈也有可能激發出相當強的Z-mode波。從模擬結果可以觀察到,高能粒子沿磁場方向的速度越高,使得哨聲波的激發程度越強,因而造成哨聲波成為系統中最主要的波。
摘要(英) A population-inversion particle distribution usually causes some instabilities in space plasmas. The theoretical study of Yoon et al. (2007) shows that a ring-beam particle distribution would lead to the amplification of X-mode, O-mode, and Z-mode waves. However, in the present study, we find that the beam component of energetic particles may cause a strong excitation of whistler waves. Only when the pitch angle of the average drift velocity of energetic particles is nearly 90 degree, the X-mode waves can be intensively amplified with little interference of whistler waves, which may destroy the initial particle distribution rapidly. In the pure ring cases (90-degree pitch angle), we also find that whistler waves with a parallel propagation can have considerably high growth rate, which is still lower than that of X-mode. In the 60-degree ring-beam cases, the near 60-degree propagation angle leads to a strong amplification of Z-mode waves, and the growth rate and saturation energy of these Z-mode waves are comparable to those of whistler waves with nearly parallel propagation. As the beam component of energetic particles increases, the excitation rate of whistler waves increases, and the whistler mode becomes the dominant wave mode. In ring-beam cases with 30-degree pitch angle, whistler waves become quite strong, and we cannot find any obvious excitation of other wave modes.
關鍵字(中) ★ 電子迴旋輻射
★ 極區千米波
關鍵字(英) ★ cyclotron maser
★ ring beam
★ akr
論文目次 Abstract 1
摘要 2
Acknowledgements 3
Table of contents 4
List of Figures 5
Chapter 1 Introduction 13
Chapter 2 Linear Kinetic Theory 18
Chapter 3 Simulation Method 23
3.1 One-Dimensional Full Particle EM Code 23
3.2 Initial Particle Distribution 25
Chapter 4 Simulation Results 27
4.1 Ring Distribution: 30
4.1.1 Perpendicular Propagation: 31
4.1.2 Oblique Propagation 1: 40
4.1.3 Oblique Propagation 2: 46
4.2 Ring-Beam Distribution A: 57
4.2.1 Perpendicular propagation: 59
4.2.2 Oblique Propagation 1: 65
4.2.3 Oblique Propagation 2: 74
4.3 Ring-Beam Distribution B: 85
4.3.1 Oblique propagation: 88
Chapter 5 Summary and discussions 97
References 101
參考文獻 Bingham, R. and R.A. Cairns, Generation of auroral kilometric radiation by electron horseshoe distributions, Phys. Plasmas, 7, 3089, 2000.
Bingham, R., B.J. Kellett, R.A. Cairns, J. Tonge, and J.T. Mendonca, Cyclotron maser radiation from astrophysical shocks, Astrophys. J., 595, 279, 2003.
Flyagin, V.A., A.V. Gaponov, M.I. Petelin, and V.K. Yulpatov, The gyrotron, IEEE Trans. Microwave Theory Tech., 25, 514, 1977.
Fung, S.F. and A.F. Vinas, Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop, J. Geophys. Res., 99, 8671, 1994.
Harris, E.G., Unstable plasma oscillations in a magnetic field, Phys. Rev. Lett., 2, 34, 1959.
Kainer, S., D. Krauss-Varban, J.D. Gaffey Jr, and J.L. Burch, Stimulated emission of AKR in regions of a weakly unstable electron velocity distribution, J. Geophys. Res., 95, 12141, 1990.
Kainer, S. and R.J. MacDowall, A ring beam mechanism for radio wave emission in the interplanetary medium, J. Geophys. Res., 101, 495, 1996.
Krall, N.A. and A.W. Trivelpiece, Principles of plasma physics, 368-441, 1973.
Lee, L.C., Theories of non-thermal radiations from planets, IN: Plasma waves and instabilities at comets and in magnetospheres (A90-49901 23-75).Washington, DC, American Geophysical Union, 239, 1989.
Lee, L.C., J.R. Kan, and C.S. Wu, Generation of auroral kilometric radiation and the structure of auroral acceleration region, Planetary and Space Science, 28, 703, 1980.
Lee, L.C. and C.S. Wu, Amplification of radiation near cyclotron frequency due to electron population inversion, Phys. Fluids, 23, 1348, 1980.
Mutel, R.L., J.D. Menietti, I.W. Christopher, D.A. Gurnett, and J.M. Cook, Striated auroral kilometric radiation emission: A remote tracer of ion solitary structures, J. Geophys. Res., 111, A10203, 2006.
Nicholson, D.R., Introduction to plasma theory, 105-115, 1983.
Omura, Y., One-dimensional electromagnetic particle code, Proceedings of ISSS, 7, 26, 2005.
Omura, Y. and H. Matsumoto, KEMPO1: Technical guide to one-dimensional electromagnetic particle code, Computer Space Plasma Physics: Simulation Techniques and Software, 21–65, 1993.
Pritchett, P.L., Electron‐cyclotron maser instability in relativistic plasmas, Phys. Fluids, 29, 2919, 1986.
Pritchett, P.L., Cyclotron maser radiation from a source structure localized perpendicular to the ambient magnetic field, J. Geophys. Res., 91, 13569, 1986.
Pritchett, P.L., Relativistic dispersion, the cyclotron maser instability, and auroral kilometric radiation, J. Geophys. Res., 89, 8957, 1984.
Pritchett, P.L., Electron‐cyclotron maser radiation from a relativistic loss‐cone distribution, Phys. Fluids, 27, 2393, 1984.
Pritchett, P.L., Relativistic dispersion and the generation of auroral kilometric radiation, Geophys. Res. Lett., 11, 143, 1984.
Pritchett, P.L. and R.J. Strangeway, A simulation study of kilometric radiation generation along an auroral field line, J. Geophys. Res., 90, 9650, 1985.
Pritchett, P.L., R.J. Strangeway, R.E. Ergun, and C.W. Carlson, Propagation of cyclotron maser emissions in the finite AKR source cavity, American Geophysical Union, Fall Meeting 2002, SM21B-0545, 2002.
Schneider, J., Stimulated emission of radiation by relativistic electrons in a magnetic field, Phys. Rev. Lett., 2, 504, 1959.
Umeda, T., M. Ashour-Abdalla, D. Schriver, R.L. Richard, and F.V. Coroniti, Particle-in-cell simulation of maxwellian ring velocity distribution, J. Geophys. Res., 112, A04212, 2007.
Vlasov, A.A., On the kinetic theory of an assembly of particles with collective interaction, J. Phys. (U.S.S.R.), 9, 268, 1945.
Wagner, J.S., L.C. Lee, C.S. Wu, and T. Tajima, A simulation study of the loss cone driven cyclotron maser applied to auroral kilometric radiation, Radio Sci., 19, 509, 1984.
Wagner, J.S., T. Tajima, L.C. Lee, and C.S. Wu, Computer simulation of auroral kilometric radiation, Geophys. Res. Lett., 10, 483, 1983.
Wong, H.K., C.S. Wu, F.J. Ke, R.S. Schneider, and L.F. Ziebell, Electromagnetic cyclotron-loss-cone instability associated with weakly relativistic electrons, J. Plasma Phys., 28, 503, 1982.
Wu, C.S. and L.C. Lee, A theory of the terrestrial kilometric radiation, Astrophys. J., 230, 621, 1979.
Wu, C.S., M.J. Reiner, P.H. Yoon, H.N. Zheng, and S. Wang, On low-frequency type III solar radio bursts observed in interplanetary space, Astrophys. J., 605, 503, 2004.
Wu, C.S., C.B. Wang, P.H. Yoon, H.N. Zheng, and S. Wang, Generation of type III solar radio bursts in the low corona by direct amplification, Astrophys. J., 575, 1094, 2002.
Wu, C.S., C.B. Wang, G.C. Zhou, S. Wang, and P.H. Yoon, Altitude-dependent emission of type III solar radio bursts, Astrophys. J., 621, 1129, 2005.
Wu, C.S., H.K. Wong, D.J. Gorney, and L.C. Lee, Generation of the auroral kilometric radiation, J. Geophys. Res., 87, 4476, 1982.
Yoon, P.H., C.B. Wang, and C.S. Wu, Ring-beam driven maser instability for quasiperpendicular shocks, Phys. Plasmas, 14, 022901, 2007.
Yoon, P.H., C.S. Wu, and C.B. Wang, Generation of type III solar radio bursts in the low corona by direct amplification. II. further numerical study, Astrophys. J., 576, 552, 2002.
指導教授 李羅權、大村善治
(Lou-Chuang Lee、Yoshiharu Omura)
審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明