博碩士論文 956204007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.239.76.211
姓名 鄭仲庭(Chung-Ting Cheng)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 異向垂直循環流場溶質傳輸分析
(Analysis of the Solute Transport in a Vertical Circulation Anisotropic Flow Field)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立
★ 異向含水層部分貫穿井溶質傳輸分析★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響
★ 有限長度圓形土柱實驗二維溶質傳輸之解析解★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展
★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響★ 關渡平原地下水流動模擬
★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度★ 關渡濕地沉積物中砷之地化循環與分布
★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域★ 推估土壤傳輸參數現地試驗方法改進與數學模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近二十年來,垂直循環井已被證實為有效的含水層污染整技術,除應用於含水層整治工作外,垂直循環井也用來進行含水層水力試驗,推估水文地質參數。本研究發展異向垂直循環流場溶質傳輸數學模式,能夠描述及預測在異向性含水層中,垂直循環井流場之溶質傳輸。數學模式發展首先求解垂直循環井周圍的穩態洩降之解析解,利用洩降解析解可計算孔隙流速於徑向水平與垂直方向之分量;計算所得流速則代入二維圓柱座標移流-延散傳輸方程式描述垂直循環井周圍之溶質傳輸,再藉由Laplace轉換有限差分法求解二維圓柱座標移流-延散傳輸方程式,可得到含水層內溶質濃度分布。所得模式將用以分析抽/注水井篩長度與位置、水力傳導係數異向比、縱向延散度、延散度異向比、抽/注水流率與注入方式對溶質傳輸之影響,分析結果顯示,注水井篩段長度變長及抽水井篩段往下移,能夠使溶質傳輸垂直距離增加,而水平分布範圍會稍微減少,但若注水井篩段與抽水井篩段間距離太大此效應則不明顯;另外水力傳導係數異向比愈大,溶質於含水層中傳輸的水平分布範圍也愈大;縱向延散度增加則是會使傳輸的水平範圍增加,而溶質濃度分布也較為平均;延散度異向比對於溶質傳輸的範圍幾乎沒有影響;抽/注水流率增加會使溶質傳輸速度增加,傳輸的影響範圍也會有些微增加,此外,若採用連續注入方式注入溶質,對於溶質傳輸的範圍不但不會增加,反而會下降;研究所發展之模式能模擬溶質藉由垂直循環井進入含水層後的傳輸範圍,並且也能夠做為含水層整治工作參考。
摘要(英) Vertical circulation well (VCW) technique is a promising innovative technology for cleanup of the contaminated aquifer. Besides being used for injecting remedial compound to enhance aquifer remediation, vertical circulation well has also been applied to determine aquifer hydraulic or transport parameters based on analyzing the drawdown or the breakthrough curves in the extraction and injection interval. This study developed a mathematical model for describing solute transport in the anisotropic flow field. In developing the mathematical model, a steady-state analytical solution for drawdown distribution around a vertical circulation well will be obtained and used to yield the horizontal and vertical components of the pore water velocity. The two-dimensional advection-dispersion equation in cylindrical coordinates will be used for describing solute transport in the anisotropic flow field. The Laplace transform finite difference technique is applied to solve the two-dimensional advection-dispersion equation in cylindrical coordinates. The developed numerical model can be used to simulate the effect of the screen length and location, hydraulic conductivity anisotropy ratio, longitudinal dispersivity, dispersivity anisotropy ratio, injection/extraction rate and injection forms on solute transport. The screen length and location, a hydraulic conductivity anisotropy ratio, longitudinal dispersivity and injection/extraction rate have significant effect on the transport of the solute. The effect of the dispersivity anisotropy ratio and injection forms is negligible. The proposed mathematical model provides a tool for describing the transport regime of the solute, and can be useful in groundwater contamination treatment systems.
關鍵字(中) ★ 垂直循環井
★ 溶質傳輸
★ 水力傳導係數異向比
★ 延散度異向比
關鍵字(英) ★ vertical circulation well
★ solute transport
★ hydraulic conductivity anisotropy ratio
★ dispersivity anisotropy ratio
論文目次 目錄
中文摘要.................................................................................................................i
英文摘要................................................................................................................ii
誌謝.......................................................................................................................iii
目錄.......................................................................................................................iv
圖目錄...................................................................................................................vi
表目錄....................................................................................................................x
符號說明...............................................................................................................xi
一、 緒論.............................................................................................................1
1-1 前言.........................................................................................................1
1-2 文獻回顧.................................…………………....................................7
1-3 研究目的...............................................................................................12
二、 單井垂直循環流場與溶質傳輸數學模式...............................................13
2-1 垂直循環井穩態地下水流數學模式...................................................17
2-2 垂直循環井溶質傳輸數學模式...........................................................23
三、 結果與討論...............................................................................................34
3-1 模式驗證...............................................................................................34
3-2 模擬結果...............................................................................................37
3-2-1 溶質於含水層中傳輸情形............................................................40
3-3 井篩位置及長度對溶質傳輸之影響...................................................42
3-4 含水層水力傳導係數異向比對溶質傳輸影響...................................53
3-5 縱向延散度對溶質傳輸之影響...........................................................57
3-6 含水層延散度異向比對溶質傳輸影響...............................................63
3-7 抽/注水流率對溶質傳輸之影響...................................................68
3-8 溶質瞬間注入與連續注入比較...................................................70
四、 結論與建議...............................................................................................75
4-1 結論.......................................................................................................75
4-2 建議.......................................................................................................77
參考文獻.............................................................................................................78
附錄 數學模式FORTRAN程式碼..................................................................84
參考文獻 〔1〕 Douglas, M. Mackay and John A. Cherry, “Groundwater contaminant: Pump-and-treat remediation”, Environment Science Technology, 23 (6), pp. 630–636, 1998
〔2〕 Andrew, C.E., Thomas, G.,“Best Available Treatment Technologies Applied to Groundwater Circulation Wells”, Remediation, 12 (3), pp. 63–80, 2002
〔3〕 Starr, R.C., Cherry, J.A., “In situ remediation of contaminated ground water: the funnel-and-gate system”, Ground Water, 32 (3), pp. 465–476, 1994
〔4〕 Wilson, R.D., Mackay, D.M., Cherry, J.A., “Arrays of unpumped wells for plume migration control by semi-passive in situ remediation”, Ground Water Monitoring and Remediation, 17 (3), pp. 185–193, 1997
〔5〕 Buchanan, R.J., Jr., Lutz, E.J., Ellis, D.E., Bartlett, C.L., Hanson, G.J., Lee, M.D., Heitkamp, M.A., Harkness, M.A., DeWeerd, K.A., Spivak, J.L., Davis, J.W., Klecka, G.M., Pardieck, D.L., “Anaerobic reductive dehalogenation pilot design for Dover Air Force Base”, In situ and On-site Bioremediation: volume 3, Papers from Fourth International In situ and On-situ Bioremediation Symposium, pp. 289, New Orleans, April 28–May 1, 1997
〔6〕 Lang, M,M., Roberts, P.V., Semprini, L., “Model simulations in support of field scale design and operation of bioremediation based on cometabolic degradation”, Ground Water, 35 (4), pp. 565–573, 1997
〔7〕 Spuij, F., Alphenaar, A., de Wit, H., Lubbers, R., v/d Brink, K., Gerritse, J., Gottschal, J., Houtman, S., “Full-scale application of in situ bioremediation of PCE-contaminated soil”, In situ and On-site Bioremediation: Volume 5, Papers from Fourth International In situ and On-site Bioremediation Symposium, pp. 431–437, New Orleans, April 28–May 1, 1997
〔8〕 Cunningham, J.A.,Hoelen, T.P., Hopkins,G.D., Lebron, C.A.,Reinhard, M., “Hydraulics of recirculating well pairs for ground water remediation”, Ground Water, 42 (6), pp. 880–889, 2004
〔9〕 Reinhard, M., Hopkins, G., Cunningham, J., Lebron, C.A., “Enhanced in situ anaerobic bioremediation of fuel-contaminanted ground water, NFESC Contract Report CR 00-005-ENV, 2000
〔10〕McCarty, P.L., Goltz, M.N., Hopkins, G.D., Dolan, M.E., Allan, J.P.,Kawakami, B.T., Carrothers, T.J., “Full scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection”, Environment Science & Technology, 32 (1), pp. 88–100, 1998
〔11〕Goltz, M.N., Ganghi, R.K., Gorelick, S.N., Hopkins, G.D., Smith, L.H., Timmins, B.H., McCarty, P.L., “Field evaluation of in situ source reduction of trichloroethylene in groundwater using bioenhanced in well vapor stripping”, Environment Science & Technology, 39, pp. 8963–8970, 2005
〔12〕Gandhi, R.K., Hopkins, G.D., Goltz, M.N., McCarty, P.L., “Full- scale demonstration if in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system”, Water Resources Research, 38 (4), pp. 10-1–10-15, 2002a
〔13〕Gandhi, R.K., Hopkins, G.D., Goltz, M.N., McCarty, P.L., “Full- scale demonstration if in situ cometabolic biodegradation of trichloroethylene in groundwater 2. Comprehensive analysis of field data using reactive transport modeling”, Water Resources Research, 38 (4), pp. 11-1–11-18, 2002b
〔14〕Holen, T.P., Cunningham, J.A., Hopkins, G.D., Lebron, C.A., Reinhard, M., et al., “Bioremediation of cis-DCE at a sulfidogenic site by amendmemt with propionate”, Ground Water Monitoring & Remediation, 26 (3), pp. 82–91, 2006
〔15〕Herrling, B, Stamm, J., Alesi, E.J., Brinnel, P., Hirschberger, F., Sick, M.R., “In situ groundwater remediation of strippable contaminants by vacuum vaporizer wells (UVB) operation of the well and report about cleaned industrial sites”, Third Forum on Innovative Hazardous Waste Treatment Technologies: Domestic and International, Dallas, Texas, June 11–13, 1991
〔16〕U.S. EPA, Site Technology Capsule: Unterdruck-Verdampfer-Brunnen Technology (UVB) Vacuum Vaporizing Well, Technical Report EPA-540/R-95-500, 1995
〔17〕Miller, P. G.., D. S. Roots, “In-well Vapor Stripping”, GWRTAC Technology Overview Report TO-97-01, 1997
〔18〕U.S. EPA, Field applications of in-situ remediation technologies: Ground-Water circulation wells, Technical Report EPA-542-R-98-009, 1998
〔19〕Sick, M. R. and E. J. Alesi, “UVB-Technique for the creation of a circulation flow in an aquifer for the removal of chlorinated hydrocarbons at a site in the Rine-Ruhr area”. Third Forum on Innovative Hazardous Waste Treatment Technologies: Domestic and International, Dallas, TX, June 11–13, 1991
〔20〕Burns, W. A., Jr., “New single-well test for determining vertical permeability. Journal of Petroleum Technology, pp. 743–752, June, 1969
〔21〕Kabala, Z.J., “The dipole-flow test: a new single-borehole tests for aquifer characterization”, Water Resources Research, 29 (1), pp. 99–107, 1993
〔22〕Zlotnik, V.A., and G. Ledder, “Theory of dipole flow in uniform anisotropic aquifers”, Water Resources Research, 32 (4), pp. 1119–1128, 1996
〔23〕Philip, R. D., and G. R. Walter, “Prediction of flow and hydraulic head for vertical circulation well”, Ground Water, 30 (5), pp. 765–773, 1992
〔24〕Xiang, J., and Z. J. Kabala, “Performance pf the steady-state dipole flow test in layered aquifer”, Hydrological Processes, 11(12), pp. 1595–1605, 1997
〔25〕Van Peursem, D., G., Ledder, and Zlotnik, “The Kinematic flow structurefor the Gvirtzman-Gorelick in-situ VOC remediation system”, Transport in Porous media, 30 (2), pp. 363–376, 1998
〔26〕Halihan, T., and V. A. Zlotnik, “Asymmetric dipole-flow test in a fractured carbonate aquifer”, Ground Water, 40 (5), pp. 491–499, 2000
〔27〕Alesi, E.J., Brinnel, P., Herding, B., Hirschberger, F., Sick, M.R., Stamm, J., “In situ groundwater remediation of strippable contaminants by vacuum vaporizer wells (UVB): operation of the well and report about cleaned industrial sites”, Third Forum on Innovative Hazardous Waste Treatment Technologies: Domestic and International, Dallas, TX, 1991
〔28〕Herrling, B., Stamm, J., “Numerical results of calculated 3D vertical circulation flows around wells with two screen sections for in situ on on-site remediation”, Proc. IX International Conference on Computational Methods in Water Resources, Denver, CO, 1991
〔29〕Peursem, D.V., Zlotnik, V., Ledder, G., “Groundwater flow near vertical recirculatory wells: effect of skin on flowgeometry and travel times with implications for aquifer remediation”, Journal of Hydrology, 222, pp. 109–122, 1999
〔30〕Stallard, W.M., Wu, K.C., Shi, N., Yavuz Corapcioglu, M., “Two-dimensional hydraulics of recirculating ground-water remediation wells in unconfined aquifers”, Journal of Environment Engineering, 122, pp. 692–699, August, 1996
〔31〕Chen, L., and R.C. Knox, “Using vertical circulation wells for partitioning tracer tests and remediation of DNAPLs”, Ground Water Monitoring and Remediation, 17(3), pp. 161–168, 1997
〔32〕Sutton, D.J., Z.J. Kabala, D.E. Schaad, and N.C. Ruud, “The dipole-flow test with a tracer: a new single-borehole tracer test for aquifer characterization”, Journal of Contaminant Hydrology, 44, pp. 71–101, 2000
〔33〕Allmon, W. E., Everett, L. G., Lightner, A. R., Alleman, B., Boyd, T. J., and Spargo, B. J, Groundwater circulating well technology assessment, Rep. No. NRL/PU/6115-99-384, Naval Research Laboratory, Washington, D.C., 1999
〔34〕Brooks, M.C., M.D. Annable, P.S.C. Rao, K. Hatfield, J.W. Jawitz, W.R. Wise, A.L. Wood, and C.G. Enfield, “Controlled release, blind tests of DNAPL characterization using partitioning tracers”, Journal of Contaminant Hydrology, 59, pp. 187-210, 2002
〔35〕Lakhwala, F. S., J. G. Mueller, and R. J. Desrosiers, “Demonstration of a microbiologically enhanced vertical ground water circulation well technology at a Superfund site”, Ground Water Monitoring and Remediation, 18 (2), pp. 97–106, 1998
〔36〕Knox, R.C., D.A. Sabatini, J. H. Harwell, R. E. Brown, C. C. West, F. Blaha, and C. Griffin, “Surfactant remediation field demon- stration using a vertical circulation well”, Ground water, 35 (6), pp. 948–953, 1997
〔37〕Blanford, W.J., M.L. Barackman, T.B. Boving, E.J. Klingel, G.R. Johnson, and M.L. Brusseau, “Cyclodextrin-enhanced vertical flushing of a trichloroethene contaminated aquifer”, Ground water Monitoring and Remediation, 21, pp. 58–66, 2001
〔38〕Kerfoot, W.B., J.C. Schouten, and V.C.M. van Engen-Beukeboom, “Kinetic analysis of pilot test results of the C-Sparge process”, In: Wickramanayake, G.B. and R.E. Hinchee (Eds.), The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Monterey, California, pp. 271–277, 1998
〔39〕Gvirtzman, H., Gorelick, S.M., “The concept of in-situ vapor stripping for removing VOCS from groundwater”, Transport in Porous Media, 8 (1), pp.71–92, 1992
〔40〕U.S. EPA, Technology Evaluation Report for the NoVOCS™ Technology, EPA/540/R-00/502a., 2000
〔41〕Hantush, M.S., “Hydraulics of wells, In: Chow, V.T. Ed.”, Advances in Hydroscience, Vol. 1, pp. 281–442, Academic Press, New York, 1964
〔42〕Sudicky, E.A., “The Laplace transform Galerkin technique: a time- continuous finite element theory and application to mass transport in groundwater”, Water Resources Research, 25 (8), pp.1833-1846, 1989
〔43〕Moridis, G.J., Reddel D.L., “The Laplace transform finite difference method for simulation of flow through porous media”, Water Resources Research, 27 (8), pp. 1873–1884, 1991
〔44〕de Hoog, F.R., J. H. Knight, and A. N. Stokes, “An improved method for numerical inversion of Laplace transforms”, Journal on Scientific and Statistical Computing , 3 (3), pp. 357–366, 1982
〔45〕Crump, K.S., “Numerical inversion of Laplace transforms using a Fourier Series approximation” Journal of Association for Computing Machinery, 23 (1), pp. 89–96, 1976
〔46〕Chen, J.S., Chen, C.S., Chen, C.Y., “Analysis of solute transport in a radially divergent flow tracer test with scale-dependent dispersion”, Hydrological Processes, 21 (18), pp. 2526–2536, 2007
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明