博碩士論文 956205004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:35.170.81.210
姓名 黃惠絹(Huei-Jyuan Huang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 馬尼拉海溝地震引發海嘯的潛勢分析
(Analysis of the Potential Tsunami Generated by the Earthquakes along the Manila Sub-duction Zone)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 淡水河口與近海三維水動力模式之模擬與應用★ 風場時空變化對全球大氣-海洋二氧化碳通量計算影響之研究
★ 極端降雨事件分散式集水區逕流模式之發展與驗證★ 2006年屏東外海地震引發海嘯的數值模擬探討
★ 分散式逕流模式應用於石門水庫極端降雨事件之模擬★ 三維海嘯湧潮對近岸結構物之影響
★ 大甲溪流域上游集水區極端降雨事件之雨型分析與水文模擬★ 土地利用改變對集水區河川逕流的影響: 以蘭陽溪流域為例
★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展
★ 應用流場可視化與經驗模態分解探討數值模擬風浪紊流場★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 分析基流對不同型態極端降雨事件水文模擬之影響─以烏溪流域為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據歷史海嘯資料,大部分的海嘯事件皆由海底地震引發,且其中較具威脅性者多由隱沒帶上的海底地震所引起,因此,本研究以位於台灣西南方的馬尼拉海溝為研究區域,探討馬尼拉海溝地震引發海嘯的潛勢分析
。本研究分成兩個方向分析馬尼拉海溝的地震參數,第一個部份根據Kirby (2006),將馬尼拉海溝分成六個區域,每一個區域包含一個假設的破裂面,並且考慮馬尼拉海溝分布曲率建立馬尼拉破裂面七與破裂面八,最後利用Papazachos et al.(2004)提供的迴歸式,計算出每一個破裂面的寬度與平均滑移量。第二個部份將六個破裂面的長度相加,建立一個全長990公里的馬尼拉破裂面,並且利用過去百年來的三大地震推算破裂面參數。最後將參數代入斷層模式中計算地表變形造成的海水面變動,再經由海嘯數值模式模擬海嘯波的傳播情形。
經由模擬結果指出,當波高由發震地點傳播至南中國海時,波高已明顯減少,然而,當海嘯波經過中國東南外海的大陸斜坡與大陸棚後,海嘯波高反增加60%。而當全長990公里的馬尼拉海溝破裂時,海嘯波在台灣南部地區以及宜蘭蘇澳一帶將引起約5公尺的波高,在中國東南地區以及越南地區引起10公尺以上的波高,而呂宋島地區為距離震央最近的島嶼,故海嘯波在呂宋島地區引起將近15公尺的波高。除了呂宋本島僅有10分鐘與台灣南部僅有20分鐘時間讓沿岸居民進行疏散,其他環南海諸國地區都有充分的時間進行撤離。
除此之外,本研究比較全長990公里的馬尼拉破裂面之模擬結果與2004年蘇門達臘海嘯事件的異同。以蘇門達臘海嘯事件而言,其海嘯由發震地點至斯里蘭卡、印度的距離與本研究假設全長990公里的馬尼拉破裂面的位置至越南的距離相同,兩者造成的海嘯波抵達時間與波高都很相近。不同的是,南中國海地區海域面積與印度洋海域面積相差200倍之多,因此,當印度洋發生海嘯事件時,海嘯能量將不斷往廣闊的深海地區傳遞,然而當南中國海發生海嘯事件時,海嘯能量將集中在封閉且狹小的南中國海海盆中,故對環南中國海沿岸地區的影響將更甚於環印度洋沿岸地區。
以上研究結果中說明南中國海海嘯預警系統的必要性,雖然全長990公里的馬尼拉破裂面錯動的機率並不高,一旦發生,南中國海環海諸國都將受到海嘯波嚴重的破壞。
摘要(英) Almost all devastating tsunamis were triggered by shallow earthquakes in sub-duction zones. We thus focus on the Manila sub-duction zone (or called Manila Trench), deemed as the most likely source region within the South China Sea (SCS), to assess the potential tsunami hazards in Taiwan.
To cope with the changing strikes, we group the entire Manila Trench into six hypothetical fault segments, similar to those of Kirby (2006). The width and dislocation of each fault are then inferred from its length, according to the empirical relations of Papazachos et al. (2004). In addition, by summing all the six fault segments, we create a hypothetical 990 km long fault along the Manila Trench, whose width, dislocation and focal depth are determined based on the data of the three largest earthquakes occurred in the past one hundred year .
Upon simulation of tsunami caused by earthquakes on hypothetical faults, results indicate that the heights of tsunami waves decreases as they propagate from the source region into South China Sea (SCS). However, a 60% amplification of wave height is observed along the southeast China offshore when the wave crossing the continental slope and shelf. For the 990 km long fault scenario, the tsunami wave height reaches about 5 m in southern Taiwan, Suao, and Ilan. It reaches about 10 m in southeast China and Vietnam. For the island nearest to the source region, Luzon island, the tsunami wave height can reach as high as 15 m. Simulation results of the worse case scenario also indicate that tsunami waves will arrive at the Luzon island 10 min after the earthquake and the southern Taiwan 20 min after. The more than 20min evacuation time for other regions suggests that the establishment of an effective tsunamis warning system is plausible.
We also compare the simulation results of the 990 km long fault with the tsunami of the 2004 Sumatra earthquake. The epicenter distances from Sumatra to Sri Lanka and India are comparable to those from Manila to Vietnam. As the results, we deduce comparable tsunami arrival times and wave heights along Sri Lanka, India, and Vietnam. However, while the tsunami waves can propagate further into the open Indian Ocean for the Sumatra case, the relative closeness of SCS tends to trap tsunami waves, causing more damages for Manila case.
Manila results of this study suggest that the establishment of SCS tsunami warning system is worthwhile and earthquakes in Manila sub-duction zone need to put into highly alert.
關鍵字(中) ★ 馬尼拉海溝
★ 海嘯
★ COMCOT
關鍵字(英) ★ COMCOT
★ tsunami
★ Manila trench
論文目次 中文摘要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ i
英文摘要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ iii
誌 謝・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ v
目 錄・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ vii
圖目錄・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ x
表目錄・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ xiv
第一章 緒論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1
1-1 前言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1
1-2 研究目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2
1-3 南中國海歷史海嘯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
1-4 海嘯數值模式與應用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
1-5 論文架構・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 11
第二章 馬尼拉海溝之地體構造背景・・・・・・・・・・・・・・・・・・・・・・・・・ 13
2-1 馬尼拉隱沒系統之形成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13
2-2 馬尼拉隱沒系統之地體構造分布・・・・・・・・・・・・・・・・・・・・・ 15
第三章 研究方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 17
3-1 研究流程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 17
3-2 馬尼拉六個破裂面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 17
3-3 破裂面之地震參數分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 20
3-4 馬尼拉破裂面七與破裂面八・・・・・・・・・・・・・・・・・・・・・・・・・ 34
3-5 全長990公里的馬尼拉破裂面・・・・・・・・・・・・・・・・・・・・・・・・ 34
3-6 數值模式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 38
3-7 模擬範圍地形資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 40
第四章 模擬結果與分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 47
4-1 馬尼拉六個破裂面之模擬結果與分析・・・・・・・・・・・・・・・・・ 48
4-1-1 六個破裂面錯動造成之初始波高・・・・・・・・・・・・・・・・・・ 48
4-1-2 六個破裂面錯動造成之海嘯走時・・・・・・・・・・・・・・・・・・ 50
4-1-3 六個破裂面錯動造成之海嘯最大波高分布・・・・・・・・・・ 54
4-1-4 六個破裂面錯動造成之沿岸最大波高分布・・・・・・・・・・ 57
4-2 馬尼拉破裂面七與破裂面八之模擬結果與分析・・・・・・・・・ 73
4-2-1 破裂面七與破裂面八錯動造成之初始波高・・・・・・・・・・ 73
4-2-2 破裂面七與破裂面八錯動造成之海嘯走時・・・・・・・・・・ 74
4-2-3 破裂面七與破裂面八錯動造成之最大波高分布・・・・・・ 75
4-2-4 破裂面七與破裂面八錯動造成之沿岸最大波高分布・・ 77
4-3 990公里馬尼拉破裂面之模擬結果與分析・・・・・・・・・・・・・・ 83
4-3-1 990公里馬尼拉破裂面錯動造成之初始波高・・・・・・・・・ 85
4-3-2 990公里馬尼拉破裂面錯動造成之海嘯走時・・・・・・・・・ 86
4-3-3 990公里馬尼拉破裂面錯動造成之最大波高分布・・・・・ 87
4-3-4 990公里馬尼拉破裂面錯動造成之沿岸最大波高分布・ 88
第五章 結論與討論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 91
5-1 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 91
5-2 討論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 94
5-2-1 馬尼拉海嘯數值模擬結果比較・・・・・・・・・・・・・・・・・・・・ 94
5-2-2
990公里馬尼拉破裂面模擬結果與蘇門達臘海嘯之異同・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
101
參考文獻・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 103
參考文獻 [1] Berninghausen, W. H., 1969, Tsunamis and seismic seiches of South-east Asia, Bull. Seism. Soc. Am., 59, 289-297.
[2] Cardwell, R. K., B. L. Isacks and D. E. Karig, 1980, The spatial distribution of earthquakes, focal mechanism solutions, and subducted lithosphere in the Philippine and northeastern Indonesian islands, in The Tectonic and Geologic Evolution of South-east Asian Seas and Islands, Geophys. Monogr. Ser., 23, edited by D. E. Hayes, p. 1-35, AGU, Washington, D. C..
[3] Catalog of Tsunamis in the Pacific Ocean and for the Catalog of Tsunamis in the Hawaiian Islands. World Data Center A-Tsunami U.S. Dept. of Commerce Environmental Science Service Administration Coast and Geodetic Survey, May 1969.
[4] Cisternas, M., B. F. Atwater, F. Torrejón, Y. Sawai, G. Machuca, M. Lagos, A. Eipert, C. Youlton, I. Salgado, T.Kamataki, M. Shishikura, C. P. Rajendran, J. K. Malik, Y. Rizal and M. Husni, 2005, Predecessors to the giant 1960 Chile earthquake, Nature, 437, 404-407.
[5] Cox, D. C., 1970, Discussion of "Tsunami and seismic seiches of South-east Asia" by William H. Berninghausen, Bull. Seism. Soc. Am., 60, 281-287.
[6] Edison, G., L. F. Liu, H. T. Michelle, V. V. Titov and Z. Hongqiang, 2007, Sensitivity Analysis of Source Parameters for Earthquake-Generated Distant Tsunamis, J. Waterway, Port, Coastal, Ocean Eng., 6, 429-441.
[7] Fukao, Y., 1979, Tsunami earthquakes and subduction processes Near deep-sea trenches, J. Geophys. Res., 84, 2303-2314.
[8] Geller, R. J., 1976, Scaling relations for earthquake source parameters and
magnitudes, Bull. Seism. Soc. Am., 66, 1501-1523.
[9] Hamamatsu, O., 1966, Outlines of disastrous or tsunamis earthquakes occurred during 1948-1963 in the world, Quarterly Journal of Speech, 30.
[10] Hamburger, M. W., R. K. Cardwell and B. L. Isacks, 1983, Seismotectonics of the northern Philippine island arc, The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, Geophys. Monogr. Ser., 27, edited by D. E. Hayes, p. 1-22, AGU, Washington, D. C..
[11] Hayes, D. E. and S. D. Lewis, 1984, A geophysical study of the Manila Trench, Luzon, Philippines 1. Crustal structure, gravity, and regional tectonic evolution, J. Geophys. Res., 89, 9171-9195.
[12] Hebert, H., A. Sladen and F. Schindele, 2007, Numerical modeling of the great 2004 Indian Ocean tsunami: Focus on the Mascarene Islands, Bull. Seism. Soc. Am., 97, S208-S222.
[13] Heck, N. H., 1947, List of seismic sea waves, Bull. Seism. Soc. Am., 37, 269-286.
[14] Ichinose, G., P. Somerville, H. K. Thio, R. Graves and D. O'Connell, 2007, Rupture process of the 1964 Prince William Sound, Alaska,earthquake from the combined inversion of seismic,tsunami,and geodetic data, J. Geophys. Res., 112, B07306.
[15] Iida, K., D. C. Cox and G. Pararas-Carayannis, 1967, Preliminary catalog of tsunamis occurring in the Pacific Ocean, Hawaii Inst. Geophys., Univ. Hawaii, Data rep. N 5.
[16] Imamura, F., 2006, Tsunami modeling manual, School of Civil Eng., DCRC, Tohoku Univ.
[17] Jiang, C. S. and Z. L. Wu, 2005, The December 26,2004, off the west coast of northern Sumatra, Indonesia, Mw=9.0, earthquake and the critical-point-
like model of earthquake preparation, ACTA Seismologica Sinica, 18, 290-296.
[18] Johnson, J. M., K. Satake, S. R. Holdahl and J. Sauber, 1996, The 1964 Prince William Sound earthquake: Joint inversion of tsunami and geodetic data, J. Geophys. Res., 101, 523-532.
[19] Keimatsu, M., 1963, On the historical tidal waves in China (in Japanese), Zishin, 16.
[20] Kirby, S., 2006, Tsunami Source Characterization for Western Pacific Subduction Zones, 2006 USGS Tsunami Source Working Group.
[21] Lee, B. Y., 1988, International Tsunami Seminar in the Western Pacific Region, Tokyo. Report by Hong Kong.
[22] Lima, V. V., J. M. Miranda, M. A. Baptista, J. Catalao, M. Gonzalez and P. M. M. Soares, 2008. Spatial distribution of tsunami height and the extent inundation along the southeastern Iberian coast for the 1755 event, Geophys. Res., 10, EGU2008-A-00822.
[23] Liu, P. L.-F., Y. S. Cho, S. B. Yoon and S. N. Seo, 1994, Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii, in Recent development in tsunami research, edited by M. I. El-Sabh, Kluwer Academic, Dordrecht, The Netherlands, 99-115.
[24] Liu, P. L.-F., S. B. Woo and Y. S. Cho, 1998, Computer programs for tsunami propagation and inundation, Cornell University.
[25] Liu, Y., S. Angela, M. W. Shuo, S. Yaolin, L. Hailing and A. Y. David, 2007, Tsunami hazards along Chinese coast from potential earthquakes in South China Sea, Physics of the Earth and Planetary Interiors, 163, 233–244
[26] Ludwig, W. J., D. E. Hayes and J. I. Ewing, 1967, The Manila Trench and West Luzon Trough-I. Bathymetry and sediment distribution, Deep-Sea Res., 14, 533-544.
[27] Mansinha, L. and D. E. Smylie, 1971, The displacement fields of inclined faults, Bull. Seism. Soc. Am., 61, 1433-1440.
[28] Murphy, L. M. and W. K. Cloud, 1951, Tidal disturbances of Seimic origin, United States Earthquakes, N 762.
[29] Neumann, F., 1934, United States Earthquakes, N 593.
[30] Okada, Y., 1986, Surface deformation due to shear and tensile faults in a halfspace, Bull. Seism. Soc. Am., 75, 1135-1154.
[31] Papazachos, C. B., E. M. Scordilis, D. G. Panagiotopoulos and G. F. Karakaisis, 2004, Global relations between seismic fault parameters and moment magnitude of earthquakes, Bulletin Of the Geological Society of Greece, 25, 1482–1489.
[32] Papazachos, C. B., G. F. Karakaisis and E. M. Scordilis, 2006, Perspectives
for earthquake prediction in the Mediterranean and contribution of geologi-
cal observations, Geophysical Society, London, Special Publications, 260,
689-707
[33] Repetti, W. C., 1934, The China Sea earthquake of February 14, 1934, Seismological Bulletin, Manila Central Observator, 22-29.
[34] Sibuet, J. C., S. K. Hsu, 2004, How was Taiwan created? Tectonophysics, 397, 159-181.
[35] Soloviev, S. L. and Ch. N. Go, 1984, Catalog Tsunamis on the Western Shore of the Pacific Ocean. Canada Inst. for Scientific and Technical Information, National Research Council Ottawa, Ontario, Canada KIA OS2.
[36] Subarya C, M. Chlieh, L. Prawirodirdjo, J. P. Avouac, Y. Bock, K. Sieh, A. J. Meltzner, D. H. Natawidjaja and R. McCaffrey, 2006, Plate-boundary deformation associated with the great Sumatra–Andaman earthquake, Nature, 440, 46-51.
[37] Titov V. V. and F. I. Gonzalez, 1997, Implementation and testing of the method of splitting tsunami (MOST) model, NOAA/Pacific Marine Environmental Laboratory.
[38] USGS Tsunami Sources Workshop 2006: Great earthquake tsunami sources: Empiricism & Beyond, April 21-22, 2006.
[39] Wang, X. and P.L.-F. Liu, 2005, Preliminary simulation of 1986 & 2002 Taiwan Hualien Tsunami, Cornell University.
[40] Wang, X. and P.L.-F. Liu, 2006, An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami, J. Hydraulic Eng., 44, 147-154.
[41] Wang, X. and P.L.-F. Liu, 2006, Tsunami Hazard and Forecast Study in South China Sea, School of Civil & Environmental Engineering, Cornell University.
[42] Wells, D. L. and K. J. Coppersmith, 1994, New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement, Bull. Seism. Soc. Am., 84, 974-1002.
[43] Yang, H. T., 1987, Tsunami and Pacific tsunami warning system (Hai xiao ji tai ping yang hai xiao jing bao xi tong), Marine Forecasts, 68–76 (in Chinese).
[44] Yang, T. F., T. Lee, C. H. Chen, S. N. Cheng, U. Knittel, R. S. Punongbayan and A. R. Pasdas, 1996, A double island arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophy-sics, 258, 85-101.
[45] 古佳艷,2004,台灣至呂宋島間馬尼拉海溝的震測研究:從正常隱沒
到初期碰撞抬昇的上部地殼構造,國立中央大學地球物理研究所碩士
論文。
[46] 李善邦,1981,中國地震:中國歷史海嘯記載一覽表,地震出版社。
[47] 李孟芬,1996,台灣地區地震海嘯之可能性研究,國立中央大學地球物理研究所碩士論文。
[48] 何春蓀,1982,台灣地體構造演變:台灣地體構造說明書,經濟部出版, 126頁。
[49] 馬國鳳,2006,從南亞海嘯談起,科學發展20061月 第397期。
[50] 徐 泓,1983,清代臺灣天然災害史料彙編,行政院國家科學委員會
防災科技研究報告72-01號。
[51] 許明光、李起彤,1996,台灣及其鄰近地區之海嘯,台灣海洋學刊,
第3期第1號,1-16頁
[52] 陳韻如,2008,2006年屏東外海地震引發海嘯的數值模擬探討,國立
中央大學水文科學研究所碩士論文。
[53] 黃永德、陳營華,2006,影響中國東南沿岸的海嘯,第二屆港澳地震
科技研討會,中國,澳門。
[54] 鄭世楠、葉永田,1989,西元1604年至1988年台灣地區地震目錄,國
科會。
[55] 鄧屬予,2002,板塊間看台灣地震,科學發展,第350期,頁12-19。
指導教授 吳祚任、蔡武廷、陳伯飛
(Tso-Ren Wu、Wu-Ting Tsai、Po-Fei Chen)
審核日期 2008-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明