博碩士論文 956401002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.141.202.187
姓名 陳聖博(Sheng-po Chen)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 PAMS光化評估測站揮發性有機物模擬及模式發展
(Diagnostic Modeling of PAMS VOC Observation)
相關論文
★ 海陸風對台灣沿海地區空氣品質之影響★ 東亞出流對春季大台北地區臭氧的影響
★ 地面風及溫度納進對台灣空氣品質模擬的影響★ 台灣地區PAMS觀測資料之顯著性和規律性的分析與探討
★ 北台灣地區臭氧汙染之季節效應與東亞汙染出流之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來在進行空氣品質模擬時,普遍使用的氣相化學機制如CBM-IV、RADM2以及SAPRC等皆使用了不同的組合方式來簡併大氣中的揮發性有機物以模擬大氣中揮發性有機物的演變過程。光化評估測站(PAMS)為一量測逐時個別揮發性有機物的監測網,然而雖然光化測站至今已經運轉將近十年,在揮發性有機物的模擬與觀測上始終無法有效利用這些觀測資料來與模式的化學簡併物種作結合。藉由發展一針對PAMS物種的化學反應機制,進而將該化學反應加入一個可以模擬大氣中污染物傳輸與化學演變的空氣品質模式,這樣的模式便可以用來模擬大氣中個別揮發性物種的演變過程,進而直接與光化測站監測結果比較。
本研究使用在台灣進行空氣品質模擬已久之台灣空氣品質模式(TAQM)為基礎,並將光化測站56個物種的化學與物理傳輸過程模組加入該模式中進行個別揮發性有機物模擬。模式發展的前提為假設TAQM已經足以用來模擬大氣中氧化物以及自由基的演變,PAMS物種的模擬便可使用這些模擬結果來進行個別物種的排放、物理傳輸及化學反應模擬。
每一個經由模式模擬出來的個別揮發性有機物皆可和光化測站之觀測結果直接比較。由一個基本案例模擬中部的光化測站結果顯示當氣象模擬與觀測較符合時,排放量經過修正後,大部分的PAMS物種模擬之日夜變化趨勢皆與觀測結果符合。對於揮發性有機物的模擬,有一半以上的物種之排放量需要經過修正。我們也比較了光化測站中常被用來當作老化指標的ethylbenzene/m,p-xylenes以及ethane/n-butane,結果顯示模擬結果和觀測亦具有一致性。經由這些模擬與觀測結果比較,證明了針對光化測站揮發性有機物所發展之空氣品質模式(PAMS-AQM)已經可以成功地用來模擬大氣中PAMS物種的演變。
另外研究發現目前台灣使用之排放源資料庫中,揮發性有機物的推估過程使用了很多適用於美國的揮發性有機物物種成份比例(VOC speciation profile),卻不見得可以有效使用在台灣。為了找到適合台灣排放源特性的揮發性有機物物種成份比例,我們選用了四個氣象模擬結果較好的案例,並用比較一致性的方法來重新推估這些係數,另外又挑選了兩個在台灣較具代表性的天氣形態的案例來評估模擬結果。結果顯示模擬時若使用原來的揮發性有機物物種成份比例推估PAMS物種的排放量,幾乎所有的物種模擬結果都會低估;排放源的物種成份比例經過修正後,大部分的物種模擬結果與觀測會有比較好的相關性,因此過去所使用的揮發性有機物物種成份比例並不見得完全適用於台灣。在PAMS物種的排放量經過重新推估後,原來模式中簡併物種的排放量及模擬亦有所改變,但是對於整體臭氧的模擬並沒有顯著的影響。藉由PAMS-AQM模式的發展與PAMS觀測資料結合分析,使我們對於台灣揮發性有機物的排放量有了更近一步地認識,也顯示了PAMS觀測資料對於空氣品質模式模擬的重要性。
摘要(英) A number of gas-phase chemical mechanisms, such as CBM-IV, RADM2 and SAPRC are used in studying gas-phase atmospheric chemical processes. However, all these methods use different combinations of lumped organic species to describe the role of organics in gas-phase chemical processes. Photochemical Assessment Monitoring Stations (PAMS) have been in use for over a decade and yet it is not clear how the detailed organic species measured by PAMS compare to the lumped modeled species. By developing a detailed mechanism specifically for modeling PAMS organics and embedding this diagnostic model within a regional-scale transport and chemistry model, one can then directly compare PAMS observation with regional-scale model simulations.
The Taiwan Air Quality Model (TAQM) is modified by adding a submodel with transport processes and chemical mechanisms for the interactions of the 56 species observed by PAMS. It is assumed that the TAQM can simulate the overall regional-scale environment including evolution of oxidants over time and radicals. These results are then used to simulate the evolution of PAMS organics with species-specific source functions, meteorological transport, and chemical interactions.
The results of model simulations of each of the PAMS organics are compared with hourly PAMS surface measurements. A case study using data collected at three sites in central Taiwan shows that when meteorological simulations are compared with observations, the diurnal patterns of most organics compare well with the PAMS data, after emissions are corrected. It is found that correction is required for emissions with over half of the PAMS species, some by surprisingly large factors. With such a correlation, the simulated time evolution of the ratios of ethylbenzene/m,p-xylenes and ethane/n-butane show similar behaviors to the observation data. From the results of PAMS organics diurnal variations as well as indicator ratios, one can conclude that the developed PAMS Air Quality Model (PAMS-AQM) is successful and can be applied to the study of the evolution of PAMS organics in regional and urban environments.
Furthermore, we have found that the existing VOC emissions estimation procedure is heavily dependent on U.S.-data based emissions speciation factors so is not necessarily appropriate to apply in Taiwan. Four time periods were selected to modify PAMS species emissions for all PAMS sites in Taiwan. The evaluation of these four cases and two expanded cases reveals that the original TEDS with VOC speciation profiles is mostly underestimated in the PAMS species simulation. After the PAMS species emissions are adjusted by an identical uniform modification for all locations, the model simulations are much more comparable with the PAMS data. A sensitivity analysis for lumped VOC emissions shows that the lumped VOC emissions with modified PAMS species emissions change by a significant amount, but the net impact on ozone simulation is not significant. A protocol, using PAMS-AQM for testing the consistency between detailed VOC emissions and PAMS observations has been developed and demonstrated.
關鍵字(中) ★ 光化評估測站
★ 揮發性有機物
★ 空氣品質模式
關鍵字(英) ★ VOC
★ TAQM
★ PAMS
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xi
1. INTRODUCTION 1
1.1 Motivation 1
1.2 Objectives 5
1.3 Structure of this study 7
1.4 Organization of this study 9
2. PAMS VOC OBSERVATION 11
2.1 Observed organics 11
2.1.1 Atmospheric chemistry of VOCs 11
2.1.2 PAMS target organics 14
2.1.3 Sources of PAMS organics and the health risks of related pollutants 17
2.2 Site characteristics 21
2.2.1 Taipei area 25
2.2.2 Central Taiwan 30
2.2.3 Southwest area 37
2.2.4 Kao-Ping area 41
3. RESEARCH PROCEDURE AND SIMULATION DESIGNS 47
3.1 PAMS-AQM model development 47
3.1.1 PAMS diagnostic chemical mechanisms 48
3.1.2 Overall PAMS-AQM model structure 50
3.2 Evaluation of NMHC emissions with PAMS data 55
3.2.1 PAMS organics emissions modification 56
3.2.2 Sensitivity analyses for lumped VOC emissions 64
3.3 Model simulation design 66
4. RESULTS AND DISCUSSION 71
4.1 Comparison of PAMS-AQM simulations with PAMS observation data 71
4.1.1 Initial simulation 71
4.1.2 Evaluation of PAMS species emissions 75
4.1.3 Evaluation of diurnal averages of PAMS species 79
4.1.4 Comparison of indicators for the relative age of the air mass 80
4.2 PAMS organics emission modification for all PAMS sites in Taiwan 85
4.2.1 Evaluation of PAMS-AQM simulation results with modified emissions 85
4.2.2 Comparison of PAMS-AQM simulations with observations for case studies in 2007 92
4.2.3 Comparison of PAMS-AQM simulations with observations: expanded cases 110
4.2.4 Sensitivity analyses for lumped VOC emissions 119
5. CONCLUSIONS AND FUTURE RESEARCH PLANS 135
5.1 Conclusions 135
5.2 Future research plans 139
REFERENCES 141
Additional References for PAMS diagnostic chemical mechanism reaction rates 149
參考文獻 Altas EL; S. M. Li; L. J. Standley; R. A. Hites. National and anthropogenic organic compounds in the global atmosphere. In: Radojevic M, Harrison RA, editors. Atmospheric Acidity. Elsevier Applied Science, 313-381, 1992.
Akimoto, H.; H. Narita. Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1º 1º resolution. Atmos. Environ. 1994, 28, 213-225.
Ashford, N.A.; C.S. Miller. Low-level chemical exposures: A challenge for science and policy. Environ. Sci. Technol., 1998, 32, 508-509.
Atkinson, R. Gas-phase tropospheric chemistry of organic compounds: a review. Atmos. Environ. 1990, 24A, 1-41.
Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063-2101.
Biswas, Jhumoor; Christian Hogrefe; S. Trivikrama Rao; Winston Hao; Gopal Sistla. Evaluating the performance of regional-scale photochemical modeling systems. Part III⎯Precursor predictions. Atmos. Environ. 2001, 35, 6129-6149.
Blake, N. J.; D. R. Blake; I. J. Simpson; S. Meinardi; A. L. Swanson; J. P. Lopez; A. S. Katzenstein; B. Barletta; T. Shirai; E. Atlas; G. Sachse; M. Avery; S. Vay; H. E. Fuelberg; C. M. Kiley; K. Kita; F. S. Rowland. NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) Field Campaign: Comparison With PEM-West B. J. Geophys. Res. 2003, 108, doi:10.1029/2002JD003367.
Byun, D. W.; J. K. S. Ching, Eds. Science algorithms of the EPA models-3 community multiscale air quality (CMAQ) modeling system; EPA/600/R-99/030, US EPA, 1999.
CARB. "Proposed Regulations for Low-Emission Vehicles and Clean Fuels — Staff Report and Technical Support Document," California Air Resources Board, Sacramento, CA, August 13, 1990.
Carter W. P. L. Development of ozone reactivity scales for volatile organic compounds. J. Air & Waste Manag. Assoc. 1994, 44, 881-899.
Carter, W. P. L. Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales. Final Report to the California Air Resources Board; University of California: Riverside, California, 2008.
Carter W. P. L.; Roger Atkinson. An experimental study of incremental hydrocarbon reactivity. Environ. Sci. Technol.1987, 21, 670-679.
Chan, Chang-Chuan; Shou-Hsiang Lin; Guor-Rong Her. Office worker’s exposure to volatile organic compounds while commuting and working in Taipei city. Atmos. Environ. 1994, 28, 2351-2359.
Chang, Chih-Chang; Shun-Jin Lo; Jiunn-Guang Lo; Jia-Lin Wang. Analysis of methyl tert-butyl ether in the atmosphere and implications as an exclusive indicator of automobile exhaust. Atmos. Environ. 2003, 37, 4747-4755.
Chang, Chih-Chung; T.-Y. Chen; C.Y. Lin; C.S. Yuan; S.C. Liu. Effects of reactive hydrocarbons on ozone formation in southern Taiwan. Atmos. Environ. 2005, 39, 2867-2878.
Chang, J. S.; S. Jin; Y. Li; M. Beauharnois; C.-H. Lu; H.-C. Huang. The SARMAP Air Quality Model, Final Report to SARMAP Technical Committee; California Air Resources Board: Sacramento, California, 1995.
Chang, Ken-Hui. Development of a high-resolution air quality model: Taiwan Air Quality Model, Taiwan EPA, EPA-87-FA42-03-F5, 1998.
Chang, Ken-Hui; Tu-Fu Chen; Ho-Chun Huang. Estimation of biogenic volatile organic compounds emissions in subtropical island⎯Taiwan. Sci. Total Environ. 2005, 346, 184-199.
Cheng, Wan-Li. Ozone distribution in coastal central Taiwan under sea-breeze conditions. Atmos. Environ. 2002, 36, 3445-3459.
Chiang, Hung-Lung; Tsai Jiun-Horng; Chen Shih-Yu; Lin Kuo-Hsiung; Ma Sen-Yi. VOC concentration profiles in an ozone non-attainment area: A case study in an urban and industrial complex metroplex in southern Taiwan. Atmos. Environ. 2007, 41, 1848-1860.
Chiang, Chih-Kang; Jia-Fong Fan; Jing Li; Julius S. Chang. The impact of Asian continental outflow on the springtime ozone mixing ratio in northern Taiwan. J. Geophys. Res. 2009, 114, doi: 10.1029/2008JD011322.
Chou C. K.; S. C. Liu; C. Y. Lin; C. J. Shiu; K. H. Chang. The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmos. Environ., 2006, 40, 3898-3908.
Ding, Wang-Hsien; Jia-Lin Wang. Spatial concentration profiles of C2-C6 hydrocarbons in the atmosphere of Taipei metropolitan area. Chemosphere 1998, 37, 1187-1195.
Dodge, M. C. A comparison of three photochemical oxidant mechanisms. J. Geophys. Res. 1989, 94, 5121-5136.
Dodge, M. C. Chemical oxidant mechanisms for air quality modeling: critical review. Atmos. Environ. 2000, 34, 2103-2130.
Doraiswamy, Prakash; Christian Hogrefe; Winston Hao; Robert F. Henry; Kevin Civerolo; Jia-Yeong Ku; Gopal Sistla; James J. Schwab; Kenneth L. Demerjian. A diagnostic comparison of measured and model-predicted speciated VOC concentrations. Atmos. Environ. 2009, 43, 5759-5770.
ENVIRON. User’s guide to the Comprehensive Air Quality Model with Extensions (CAMx); ENVIRON International Corporation: Novato, California, 1997.
Fang, S.H.; H.W. Chen. Air quality and pollution control in Taiwan. Atmos. Environ., 1996, 30, 735-741.
Gery, M. W.; G. Z. Whitten; J. P. Killus; M. C. Dodge. A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 1989, 94, 12925-12956.
Guo H.; Lee S. C.; Chan L. Y.; Li W. M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research, 2003, 94, 57-66.
Harley R. A.; Cass G. R. Modeling the atmospheric concentrations of individual volatile organic compounds. Atmos. Environ. 1995, 29, 905-922.
Hass, H.; A. Ebel; H. Feldmann; H. J. Jakobs; M. Memmesheimer. Evaluation studies with a regional chemical transport model (EURAD) using air quality data from the EMEP monitoring network. Atmos. Environ. 1993, 27A, 867-887.
Hass, H.; H. J. Jakobs; M. Memmesheimer. Anaylsis of a regional model (EURAD) near surface gas concentration predictions using observations from networks. Meteorol. Atmos. Phys. 1995, 57, 173-200.
Henry, R. C.; Charles W. Lewis; John F. Collins. Vehicle-related hydrocarbon source compositions from ambient data: the GRACE/SAFER method. Environ. Sci. Technol. 1994, 28, 823-832.
Ho, K. F.; S. C. Lee; H. Guo; W. Y. Tsai. Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci. Total Environ. 2004, 322, 155-166.
Jacob, D. J.; H. C. James; M. K. Mary; S. C. Vickie; J. B. Richard; L. R. James; W. S. Glen; C. G. John; E. Louisa; L. H. Colette. Transport and chemical evolution over the Pacific (TRACE-P) aircraft mission: design, execution, and first results. J. Geophys. Res. 2003, 108, 4787.
Jacobson, Mark Z. Fundamentals of Atmospheric Modeling, 2nd, ed.; Cambridge University Press, 2000.
Khoder, M.I. Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos. Environ. 2007, 41, 554-556.
Kleindienst, T. E.; E. W. Corse; F. T. Blanchard; W. A. Lonneman. Evaluation of the performance of DNPH-coated silica gel and C18 cartridges in the measurement of formaldehyde in the presence and absence of ozone. Environ. Sci. Technol. 1998, 32, 124-130.
Lai, C. H.; K. S. Chen; Y. T. Ho; M. S. Chou. Characteristics of C2-C15 hydrocarbons in the air of urban Kaohsiung, Taiwan. Atmos. Environ. 2004, 38, 1997-2011.
Lee, Bing-Sun; Jia-Lin Wang. Concentration variation of isoprene and its implications for peak ozone concentration. Atmos. Environ. 2006, 40, 5486-5495.
Lin, Ching-Ho; Yee-Lin Wu; Chin-Hsing Lai; Po-Hsiung Lin; Hsin-Chih Lai; Pay-Liam Lin. Experimental investigation of ozone accumulation overnight during a wintertime ozone episode in south Taiwan. Atmos. Environ. 2004, 38, 4267-4278.
Liu, Chung-Ming; Ming-Te Yeh; Sahana Paul; Y.-C. Lee; D.J. Jacob; M. Fu; J.-H. Woo; G.R. Carmichael; D.G. Streets. Effect of anthropogenic emissions in East Asia on regional ozone levels during spring cold continental outbreaks near Taiwan: A case study. Environmental Modeling & Software 2008, 23, 579-591.
McKeen, S. A.; S. C. Liu. Hydrocarbon ratios and photochemical history of air masses. J. Geophys. Res. 1993, 20, 2363-2366.
Middleton, P.; J. S. Chang; J. C. del Corra; H. Geiss; J. M. Rosinski. Comparison of RADM and OSCAR precipitation chemistry data. Atmos. Environ. 1988, 22, 1195-1208.
Middleton, P.; W. R. Stockwell; W. P. L. Carter. Aggregation and analysis of volatile organic compound emissions for regional modeling. Atmos. Environ. 1990, 24A, 1107-1133.
Monod, Anne; Barkley C. Sive; Pasquale Avino; Tai Chen; Donald R. Blake; F. Sherwood Rowland. Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135-149.
Muezzinoglu, Aysen; Mustafa Odabasi; Levent Onat. Volatile organic compounds in the air of Izmir, Turkey. Atmos. Environ. 2001, 35, 753-760.
Mukerjee, S.; G. A. Norris; L. A. Smith; C. A. Nobel; L. M. Neas; A Halûk Ôzkaynak; M. Gonzales. Receptor model comparisons and wind direction analyses of volatile organic compounds and submicrometer particles in an arid, binational, urban air shed. Environ. Sci. Technol. 2004, 38, 2317-2327.
National Research Council. Rethinking the ozone problem in urban and regional air pollution. National Academy Press, Washington, DC, 1991.
Nelson, P. F.; Quigley, S. M. The m,p-xylenes:ethylbenzene ratio. A technique for estimating hydrocarbon age in ambient atmospheres. Atmos. Environ. 1983, 17, 659-662.
Odman, M. T.; C. L. Ingram. Multiscale Air Quality Simulation Platform (MAQSIP): Source code documentation and validation; Technical report of MCNC-NCSC, 1996.
Pandis, S. N.; R. A. Harley; G. R. Cass; J. H. Seinfeld. Secondary organic aerosol formation and transport. Atmos. Environ. 1992, 26A, 2269-2282.
Parrish, D. D.; A. Stohl; C. Forster; E. L. Atlas; D. R. Blake; P. D. Goldan; W. C. Kuster; J. A. de Gouw. Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J. Geophys. Res. 2007, 112, doi:10.1029/2006JD007583.
Penkett, S.A.; N.J. Blake; P. Lightman; A.R.W. Marsh; P. Anwyl; G. Butcher. The seasonal variation of nonmethane hydrocarbons in the free troposphere over the North Atlantic Ocean: possible evidence for extensive reaction of hydrocarbons with the nitrate radical. J. Geophys. Res. 1993, 98, 2865-2885.
Photochemical Assessment Monitoring Station (PAMS) Website; http://www. epa.gov/oar/oaqps/pams.
Qin, Y.; T. Walk; R. Gary; X. Yao; S. Elles. C2-C10 nonmethane hydrocarbons measured in Dallas, USA—Seasonal trends and diurnal characteristics. Atmos. Environ. 2007, 41, 6018-6032.
Russell, A., J. Milford, M. S. Bergin, S. McBride, L. McNair, Y. Yang, W. R. Stockwell, and B. Croes, Urban ozone control and atmospheric reactivity of organic gases. American Assoc. Science 1995, 269, 491-495.
SAI. User’s guide to the variable-grid urban airshed model (UAM-V); Systems Applications International: San Rafael, California, 1995.
Seinfeld, John H.; Spyros N. Pandis. Atmospheric Chemistry and Physics: From air pollution to climate change; Wiley-Interscience, 1998.
Seigneur, Christian; Betty Pun; Kristen Lohman; Shiang-Yuh Wu. Regional modeling of the atmospheric fate and transport of benzene and diesel particles. Environ. Sci. Technol. 2003, 37, 5236-5246.
Sistla, Gopal; Nenad Aleksic. A comparison of PAMS and air toxics measurements. Atmos. Environ. 2007, 41, 5719-5731.
Srivastava, A.; A.E. Joseph; S. Devotta. Volatile organic compounds in ambient air of Mumbai-India. Atmos. Environ. 2006, 40, 892-903.
Stockwell, W. R. A homogeneous gas phase mechanism for use in a regional acid deposition model. Atmos. Environ. 1986, 20, 1615-1632.
Stockwell, W. R.; Frank Kirchner; Michael Kuhn; Stephan Seefeld. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 1997, 102, 25847-25879.
Stockwell, W. R.; P. Middleton; J. S. Chang; X. Tang. The second generation Regional Acid Deposition Model chemical mechanism for regional air quality modeling. J. Geophys. Res. 1990, 95, 16343-16367.
Stockwell, W. R.; W. S. Goliff. Evaluation of the Regional Atmospheric Chemistry Mechanism, version 2 (RACM2). 2005 AGU Fall Meeting.
Streets, D. G.; T. C. Bond; G. R. Carmichael; S. Fernandes; Q. Fu; D. He; Z. Klimont; S. M. Nelson; N. Y. Tsai; M. Q. Wang; J.-H. Woo; K. F. Yarber. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 2003, 108, doi:10.1029/2002JD003093.
Taiwan Environmental Protection Agency. 2004 Air Quality Annual Report of Taiwan, Taipei, Taiwan, 2005.
Tingey, D.T.; M. Manning; L.C. Grothaus; W.F. Burns. The influence of light and temperature on isoprene emissions rates from live oak. Plant Physiol. 1979, 47, 112-118.
Tingey, D.T.; M. Manning; L.C. Grothaus; W.F. Burns. Influence of light and temperature on monoterpene emissions rates from slash pine. Plant Physiol. 1980, 65, 797-801.
Trainer, M.; E. J. Williams; D. D. Parrish; M. P. Buhr; E. J. Allwine; H. H. Westberg; F. C. Fehsenfeld; S. C. Liu. Models and observations of the impact of natural hydrocarbons on rural ozone. Nature 1987, 329, 705–707.
Tsai, Dai-Hua; Jia-Lin Wang; Chieh-Heng Wang; Chang-Chuan Chan. A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. J. Environ. Monitor. 2008, 10, 109-118.
Wang, Jia-Lin; Wei-Li Chen; Yen-Hung Lin; Cheng-Hsiung Tsai. Cryogen free automated gas chromatography for the measurement of ambient volatile organic compounds. Chromatography A 2000, 896, 31-39.
Wang, Yuhang; Tao Zeng. On tracer correlations in the troposphere: the case of ethane and propane. J. Geophys. Res. 2004, 109, doi:10.1029/2004JD005023.
Wayne, Richard P. Chemistry of Atmospheres, 3rd, ed.; Oxford University Press: New York, U.S.A., 2000.
Went, F.W. Organic matter in the atmosphere and its possible relation to petroleum formation. Proc. Natl. Acad. Sci. 1960, 46, 212-221.
Yang, K.-L.; C.-C. Ting; J.-L. Wang; O. W. Wingenter; C.-C. Chan. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan. Atmos. Environ. 2005, 39, 3221-3230.
Yarwood, G.; S. Rao; M. Yocke; G. Whitten. Updates to the carbon bond chemical mechanism: CB05. Final report to the U.S. EPA, RT-0400675, 2005.
Zaveri, R. A.; Leonard K. Peters. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. 1999, 104, 30387-30415.
張(Chang)能復、曹志宏,“以光化學反應性軌跡模式檢討MIR指標應用於台灣臭氧前驅物排放減量的效果”,第十五屆空氣污染控制技術研討會論文集,pp. 1-9,國立中央大學,台灣,1998。
葉(Ye)梅紅,「高雄地區地面及上空揮發性有機物之採樣、分析與結果探討」 ,國立高雄海洋科技大學海洋環境工程所, 碩士論文,2007。
廖(Liao)琇怡,「高雄市臭氧特性與氣象因子之相關性探討」,國立中山大學環境工程所,碩士論文,2005。
指導教授 張時禹(Julius S. Chang) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明