博碩士論文 956401601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.216.91.156
姓名 甘永萍(Amgalan Ganbat)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 蒙古沙塵事件之研究
(A Study on Aeolian Dust Event in Mongoli)
相關論文
★ 應用SSM/I衛星資料於西太平洋颱風特性之分析★ 應用衛星資料於熱帶氣旋之環境場分析
★ 衛星資料反演海氣參數及其在梅雨期海上中尺度對流系統生成發展之應用★ 應用SSM/I衛星資料分析桃芝與納莉颱風之降雨及海氣參數的變化
★ 利用Spot 4衛星的Vegetation資料比較NDVI, ARVI, 及AFRI植被指數與氣溶膠厚度之關係★ 應用衛星資料分析颱風降雨與颱風強度變化之關係
★ 應用SSM/I衛星資料於颱風中心定位及最大風速估算★ 應用衛星資料分析海氣參數與颱風強度變化之關係
★ MODIS在生質燃燒監測之應用研究★ 應用SSM/I衛星觀測資料估算颱風定量降水
★ AMSU衛星資料反演大氣溫濕剖面及其在颱風強度估算上之應用★ 利用HHT之EMD方法分析SSM/I資料估算之客觀指數與颱風強度年際變化關係
★ 模式和SSM/I客觀潛力指數在中尺度對流系統預報上之應用★ SSM/I衛星資料估算之客觀潛力指數與颱風強度變化之關係
★ 應用SSM/I衛星資料分析颱風形成之激發機制★ 衛星資料估算颱風旋轉及強度變化在熱帶氣旋定量降雨預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將呈現沙塵事件的時空分佈與沙塵事件的區域趨勢,以及地表風速與降水對蒙古地區沙塵事件的影響。所用資料為2000年至2013年間蒙古國內(可大略區分為四大區域:森林、草原、戈壁沙漠與山區)的113個氣象站。本篇研究分為三部份:(1)蒙古沙塵事件的時空特性 (2)強風(風速超過6.5 m/s)與降水對沙塵事件的關係及其影響 (3)沙塵事件的衛星遙測。
根據Natsagdorj (2003)與本篇研究結果,近20年期間,蒙古地區年際的沙塵事件天數有些微減小的趨勢。年際沙塵事件天數少於5天的區域大多分佈於蒙古北部森林草原區域,而年際沙塵事件天數大於30天以上的區域大多分佈於蒙古東南及西部。本研究分析沙塵事件頻率較高之年份(2006, 2008, 2009)、沙塵事件頻率較低之年份(2003, 2011)、沙塵頻率較平均之年份(2000-2002, 2005, 2007, 2010, 2012, 2013),其沙塵天數與強風及降水的關係。結果發現:沙塵頻率較高的年份,其沙塵天數與強風天數的相關性較高,且其間平均降水為10 mm/month,相對較少;而在沙塵較少的年份(2003, 2011),戈壁沙漠東南區域於5月期間,平均降水為22 mm,降雨量相對較多,因此發生沙塵事件的機會被抑制。研究中,利用沙塵天數與強風、降水組成的沙塵潛勢指數(PDI),可做為預測隔年春天沙塵事件多寡的指標。 本研究嘗試探討降水強弱對沙塵事件天數的影響。在戈壁沙漠5至6月期間,由於有31 mm-118 mm的降水,沙塵天數減少至12天;另外在草原及森林地區,由於有45 mm-178 mm的降水,沙塵天數減少至4天,然而在山區,其降水(117mm)與沙塵事件天數似乎沒有太大關係。
本研究亦利用衛星遙測觀測把蒙古沙塵事件分為沙塵暴(dust storm)與高吹塵(blowing dust)。因為粗顆粒與細顆粒不同的光學性質,沙塵粒子可被衛星辨別。利用MODIS( Moderate Resolution Imaging Spectroradiometer )衛星資料分析地表,利用光學厚度與地表能見度的關係,可比地面測站觀測更有效率地標定沙塵事件。研究結果指出:光學厚度(AOD)與地表能見度呈指數相關,相關性達到0.70,而此關係也可把沙塵做分類。此利用衛星反演資料之沙塵種類空間分佈情況與2004年蒙古氣象局的報告一致,代表利用衛星資料做沙塵分類是可行的。雖然在某些缺少AOD資料的區域,其事件天數與2004年報告仍有差異,但取AOD值為0.25來分類沙塵事件(沙塵暴、高吹塵),就2004年5月期間而言,超過70%的測站有相當不錯的一致性。
摘要(英) This study presents the spatiotemporal distribution and regional trend in dust event, and the impact of surface wind and precipitation on dust occurrences in Mongolia. We used data collected between 2000 and 2013 from 113 meteorological stations for natural zones of the forest steppe, steppe, the Gobi Desert and the mountains. Generally this thesis can be divided three parts as 1) spatiotemporal characterization of dust event in Mongolia; 2) we analyzed the relationship between dusty days, which is derived the sum of days with dust storm and/or drifting dust, and days with strong wind (at a threshold wind speed of a constant 6.5 m/s, hereafter, strong wind days) and precipitation and precipitation impacts on dust event; and 3) dust analyses with satellite remote sensing.
From the result of the previous study (Natsagdorj et al. 2003) and the present study, the annual dusty days have been a slight decreased over the last two decades. Annual distributions of dust storm days consisting of less than 5 days were found over the forest steppe zone in northern Mongolia, whereas areas with dust storms more than 30 days included southeast and western Mongolia. Dusty days, strong wind days and precipitation were compared among in dust-frequent years (2006, 2008 and 2009), dust-less years (2003, 2011) and dust-mean years (2000-2002, 2005, 2007, 2010, 2012 and 2013) in spatially and seasonally. The results found that dusty days in dust-frequent years were associated with strong wind days when precipitation is about the mean of 10 mm while dust occurrences were suppressed by large amounts of precipitation (approximately 22 mm) in dust-less years (2003, 2011) in May over the southeastern part of the Gobi Desert zone. We propose a potential dust index (PDI) based on the correlations among dusty days, strong winds and precipitation. The PDI performed as predicted in most areas of the country in the spring season. We attempted to present the impact of precipitation on dust events comparing between dusty days with less precipitation as a dry condition and dusty days with larger precipitation (more than the mean precipitation). Dusty days reduced by up to 12 days during March-June in the Gobi Desert due to 31-118mm precipitation and reduced up to 4 days with 45-175mm precipitation at some stations in the steppe and forest steppe zones whereas no relation found between increasing precipitation amounts (up to 117mm) and dust events in the mountains zone.
Here we categorizes dust events types (dust storm and blowing dust) by means of satellite remote sensing over Mongolia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). We used datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements. Based on correlation between the retrieved aerosol optical properties and surface visibility, the intensity of dust occurrence can be more effectively and consistently discerned using satellite rather than surface observations. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth (AOD), which is subsequently used to categorize the dust event and its correlation is above 0.70. The satellite-derived spatial frequency distributions in the dust phenomenon types are consistent with Mongolia’s weather station reports during April in 2004, indicating that dust phenomenon classification using satellite data is highly feasible. Although there were the discrepancies in the number of days where aerosol information was retrieved from MODIS and the ground-based dust event reports, which may be caused by the lack of satellite-observed AOD, they are a well consistent with the values more than 70% at many stations in April and May of 2004 when a criterion (AOD is 0.25) is used for dust phenomenon classification (dust storm and blowing dust).
關鍵字(中) ★ 沙塵事件天數
★ 蒙古
★ 降水
★ 沙塵潛式指數
★ 自然區域
關鍵字(英) ★ Dusty Day
★ Mongolia
★ Precipitation
★ Potential Dust Index
★ Nature Zone
論文目次 TABLE OF CONTENTS
摘要 i
ABSTRACT iii
TABLE OF CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x
1. CHAPTER 1: Introduction 1
1.1 Aeolian dust 1
1.2 Impacts of aeolian dust on human society 3
1.3 Impact of aeolian dust on climate 4
1.4 Global distribution of aeolian dust sources 6
1.5 Aeolian dust sources in East Asia and their long-range transport 7
1.6 Geography and Climatology of Mongolia 9
1.7 Objectives of this study 10
2. CHAPTER 2: Data and Methods 13
2.1 Ground observation meteorological data 13
2.1.1 SYNOP 13
2.1.2 Phenomena of aeolian dust 13
2.1.3 Wind velocity and strong wind 15
2.2 Data of land surface conditions 15
2.2.1 Land cover type 15
2.2.2 NDVI 18
3. CHAPTER 3. Spatiotemporal characterization of dust events 19
3.1 Background and purpose 19
3.2 Dust storm and dusty days 20
3.3 Inter-annual variations 21
3.4 Seasonal variations and spatial distribution 23
3.4.1 Precipitation impact on dust event 25
3.4.2 Potential dust index 28
3.5 Regional trend in dust events 30
4. CHAPTER 4. Dust event analysis with satellite remote sensing 32
4.1 Background and purpose 32
4.2 MODIS 34
4.3 Visibility 35
4.4 Retrieval of aerosol properties 36
4.5 Correlation between AOD and visibility 38
4.6 Aerosol properties over Mongolia 40
4.7 Dust phenomenon categorization 41
Conclusions and Future Work 44
REFERENCES 47
2. TABLES 56
Tables in Chapter 2 56
Tables in Chapter 3 58
Tables in Chapter 4 59
FIGURES 61
1. Figures in Chapter 1 61
2. Figures in Chapter 2 67
3. Figures in Chapter 3 70
4. Figures in Chapter 4 80
Appendix 94
Appendix 1 94
Appendix 2 97
Appendix 3 99
參考文獻 Arimoto. M.O. 2001: Aeolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth Sci Rev, 54, 29-42
Batima. P. and D. Dagvadorj, 2000: Climate Change and Its Impacts in Mongolia. NAMHEM
JEMR press, pp -21
Bäumer. D, B. Vogel, S. Versick, R. Rinke, O. Mohler, and M. Schnaiter. 2008: Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany. Atmos Environ, 42, 989–998.
Broxton P. D., X. Zeng, D. Sulla-Menashe, P. Troch. 2014: A Global land cover climatology
using MODIS data. J. Appl. Meteorol. 53, 1593-1605
Bryson. R and D. A. Barries. 1967: Possibilities of major climatic modification and their implications: Northwest India, a case for study. Bull Am Meteorological Soc, 48(3), 136-142
Bolortsetseg. B., Sh. Bayasgalan, B. Dorj, L. Natsagdorj and G. Tuvaansuren, 2000: Impacts on agriculture. Meteorology and Hydrolody 38: 17-23
Bullard. J. E., Thomas. D.S.G., Livingstone, I., Wiggs, G.F.S.,1997: Dunefield activity and interactions with climatic variability in the southeast Kalaharu desert. Earth surface processes and landforms. 22, 165-174
Chen. Y. S., P.C. Sheen, E. R. Chen, Y. K. Liu, T. N. Wu, C. Y. Yang. 2004: Effects of Asian dust storm events on daily mortality in Taipei. Environ Res. 95, 151-155
Chiapello et al., 1999: Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS, J. Geophys. Res., 104, 9277-9292.
Deng, X., Tie, X., Wu, D., Zhou, X., Bi, X., Tan, H., Li, F. and JIANG, C., 2008, Long term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmos Environ, 42, pp. 1424–1435.
Derimian, Y., Karnieli, A., Kaufman, Y.J., Andreae, M.O., Andreae, T.W., Dubovik, O., Engelstaedter. S and R. Washington. 2007: Temporal controls on global dust emissions: The role of surface gustiness, Geophys Res Lett, 34, L15805. doi:10.1029/2007GL029971
Garrison., V.H et al., 2003: African and Asian dust: from desert soils to coral reefs. Bio Sience, 53, 469-480
Han, Y., X. Fang, T. Zhao, and S. Kang. 2008a: Long-range trans-Pacific transport and deposition of Asian dust aerosols. J. Environ. Sci. 20, 424–428.
Hara, Y., I. Uno, and Z. Wang. 2006: Long-term variation of Asian dust and related climate factors, Atmos. Environ., 40, 6730–6740.
Haywood et al., 2003a: Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum, J. Geophys. Res.,108(D18), 8577, doi:10.1029/2002JD002687.
Hedin L. O. and G. E. Likens. 1996: Atmospheric dust and acid rain. Sci Am. 275. 88-92.
Helmert, J., B. Heinhold, I. Tegen, O. Hellmuth, and M. Wendisch. 2007: On the direct and semidirect effects of Saharan dust over Europe: a modelling study. J. Geophys. Res. 112, D13208, doi:10.1029/2006JD007444.
Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier. 1997: Global distribution of UV-absorbing aerosols from Nimbus-7/TOMS data, J. Geophys. Res., 102, 16911-16922.
Hsu, N. C., et al. 1999: Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications, J. Geophys. Res., 104, 6269-6280
Hsu NC, Herman JR, Weaver C. 2000: Determination of radiative forcing of Saharan dust using combined TOMS and ERBE data. J Geophys Res 104:6269-6279
Hsu, N. C., S. C. Tsay, M. D. King, and J.R. Herman. 2004: Aerosol properties over bright reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42, pp. 557–569.
Hsu, N. C., S. C. Tsay, M. D. King, and J.R. Herman. 2006: Deep-Blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44, pp. 3180–3195.
Husar. R. B., et al., 2001: Asian dust events of April 1998. J. Geophys.Res. 106, 18317 -18330.
IPCC Climate change 2007: Synthesis report. Core Writing Team, R.K. Pachauri, A. Reisinger (Eds.), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland.
Iwasaka, H. 2006: Impact of interannual variability of meteorological parameters on vegetation activity over Mongolia. J. Meteor. Soc. Japan, 84, 745-762, doi:10.215/jmsj.84.745.
Kalashnikova. O.V, R. Kahn, I. N. Sokoliket and W. H. Li. 2005: Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J Geophys Res 110:D18S14, doi:10.1029/2004JD004550
Kaufman, Y.J., Wald, A.E., Remer, L.A., Gao, B.C., Li, R.R. and Flynn, L., 1997: The MODIS 2.1 mm channel – correlation with visible reflectance for use in remote Sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35, pp. 1286–1298.
Kellogg CA, Griffin DW, Garrison VH, Peak HK, Royal N, Smith RM, Shinn EA. 2004:
Characterization of aerosolized bacteria and fungi from desert dust events in Mali,West Africa. Aerobiologia, 20, 99-110.
Kim S-W, Yoon S-C, Jefferson A, Won J-G, Dutton EG, Ogren JA, Anderson TL. 2004: Observation of emhamced water vapour in Asian dust layer and its effect on atmospheric radiative heating rates. Geophys Res Lett. 13, L18113, doi:10.1029/2004GL020024
Kwon. H. J, S. H. Cho, Y. Chun, F. Lagarde, G. Pershagen. 2002: Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ Res, 90, 1-5.
Kurosaki, Y., and M. Mikami. 2003: Recent frequent dust events and their relation to surface wind in East Asia, Geophys. Res. Lett., 30 (14), 1736, doi:10.1029/2003GL017261.

Kurosaki, Y., and M. Mikami.2005: Regional difference in the characteristic of dust event in East Asia: Relationship among dust outbreak, surface wind and land surface condition. SOLA. 83A, 1-18.
Loveland, T. R., et al., 2000: Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1-km AVHRR Data: Int. J. Remote Sens., 21, 1303-1330
Littmann, T., 1991: Dust storm frequency in Asia: Climatic control and variability. Int. J. Climatol., 11, 393-412.
Lin, C. Y. et al., 2004: Long range transport of Asian dust and air pollutants to Taiwan. TAO, 15, 759-784.
Liu, G. R. and T. H. Lin, 2004: Application of geostationary satellite observations for monitoring dust storms of Asia. TAO. 15, 825–837.

Liu, M., Westphal, D.L., 2001. A study of the sensitivity of simulated mineral dust production to model resolution. J. Geophys. Res. 106, 18099–18112.
Liu, Y and R. Liu. 2015: Climatology of dust storms in northern China and Mongolia: Results from MODIS observations during 2000-2010. J. Geogr. Sci. 25(11), 1298-1306. Doi:10.1007/s11442-015-1235-2.
Loveland T. R., et al 2000: Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1-km AVHRR Data. Int. J. Remote Sens, 21, 1303-1330, doi:10.1080/014311600210191
Luvsandendev, B. and Jamiyanaa, D., 1991. Hydrodynamic model for sand transportation.
Brief report of symposium on Nature and environment in the Gobi (in Mongolia),
Ulaanbaatar, pp-20
MARCC (Mongolia: Assessment report on climate change). 2009: Ministry of Environment, Nature and Tourism, Mongolia. Ulaanbaatar, pp36
Maley J., 1982: Dust, clouds, rain types and climatic variations in tropical north Atlantic, Quaternary Res. 18.1-16. doi:10.1016/0033-5894(82)90018-7.
Mao. R., C. H. Ho, S. Feng, D. Y. Gong, and Y. Shao. 2013: The influence of vegetation variation on Northeast Asian Dust Activity. Asia-Pacific J. Atmos. Sci, 49(1), 87-94.
Millennium Ecosystem Assessment, 2005: Chapter 22. Mohammed El-Kassas and Exequiel Ezcurra (Eds.), Washington DC, USA.
McKendry, I. G., J. P. Hacker, R. Stull, S. Sakiyama, D. Mignacca, and K. Reid, 2001: Long-range transport ofAsian dust to the Lower Fraser Valley, British Columbia, Canada. J. Geophys. Res. 106, 18361-18370, doi: 10.1029/2000JD900359.
Meloni D, Di Sara A, Di Iorio T, Fiocco G. 2005: Influence of the vertical profile of Saharan dust on the visible direct radiative forcing. J Quant Spectrosc Radiat Transfer 93: 397-413.
Miller, R. L., I. Tegen and J. Perlwitz, 2004: Surface radioactive forcing by soil dust aerosols and the hydrologiccycle. J. Geophys. Res, 109, D04203. doi:10.1029/2003JD004085
Nandintsetseg, B. and M. Shinoda, 2010: Seasonal change of soil moisture in Mongolia: its climatology and modeling. International Journal of Climatology, 31, 1143-1152. doi:10.1002/joc.2134
Natsagdorj L, Jugder D, and Chung Y S, 2003: Analysis of dust storms observed in Mongolia during 1937−1999. Atmos. Environ, 37, 1401−1411, doi:10.1016/S1352-2310(02)01023-3.
Natsagdorj. L, 2009: Drought and Zud (in Mongolian). BEMBI SAN Press, Ulaanbaatar, 62 pp.
NAMHEM. 2014: Meteorological Observations Manual 14, Ulaanbaatar (in Mongolian).
Nicholson SE. 2000: Land surface processes and Sahel climate. Rev Geophys. 38: pp.117.
NSOM (National Statistical Office of Mongolia), Report 2012, Ulaanbaatar, 2013.
Park, S. U., L. S. Chang, E. H. Lee. 2005: Direct radiative forcing due to aerosols in East Asia during a Hwangsa (Asian Dust) event observed on 19-23 March 2002 in Korea. Atmos Environ 39, 2593-2606.
Prasad, A.K., Singh, S., Chauhan, S.S., Srivastava, M.K., Singh, R.P., Singh, R. 2007: Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms. Atmos. Environ. 41, 6289–6301.
Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill. 2002: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40(1), 1002, doi:10.1029/2000RG000095.
Puntsagdorj. C, 2014: Meteorological Observations Manual 14 (in Mongolian). NAMHEM, Ulaanbaatar, pp-8.
Pye, K. 1987: Aeolian Dust and Dust Deposits. Academic Press, London, 334 pp.
Retalis. A et al., 2010: Comparison of aerosol optical thickness with in situ visibility data over Cyprus. Nat. Hazards Earth Syst. Sci., doi:10, 421–428.
Rosenfeld. D., Y. Rudish and R. Lahav: 2001. Desert dust suppressing precipitation: A possible desertification feedback loop. Proceeding of National Academy of Science. 98: 11. 5975-5980.
Qian. W, L. Qian and S. Shi. 2001: Variations of the Dust Storm in China and its Climatic Control, J Climate, 15, 1216-1228, doi:10.1175/1520-0442(2002)015.
Qiu, J. and Yang, L., 2000: Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994, Atmos. Environ., 34, 603-609.
Qiu, J., 2003. Broadband extinction method to determine aerosol optical depth from accumulated direct solar radiation. J Appl Meteorol, 42, pp. 1611–1625.
Quijano. A. L, I. N. Sokolik, B. O. Toon. 2000: Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions. J Geophys Res 105(D10):12207-12219.
Schutz, L., and M. Sebert. 1987: Mineral aerosols and source identification, Aerosol Sci. 18, 1-10, 1987.
Shao, Y., 2000. Physics and Modelling of Wind Erosion. Kluwer Academic Publishers, 393pp

Shao. Y., J. J. Wang, 2003: A climatology of northeast Asian dust events. Meteorol. Z. 12, 175-183.
Shao, Y. and C. H. Dong, 2006: A review on East Asian dust storm climate, modeling and monitoring, Global Planet. Change, 52, 1– 22.
Solis, J., 1999, Correlation of aerosol optical depth with weather variables. Institute of Climate and Planets, NASA Goddard Institute of Space Studies. Available online at: http:icp.giss.nasa.gov/research/ppa/1999/solis/introduction.html (accessed 20 September 2008).
Squires. V. R. 2001: Distinguishing natural causes and human intervention as factors in accelerated wind erosion: The development of environmental indicators. Global alarm: dust and sandstorms from the world’s drylands. 257-265, Beijing. United nations.
Takemura, T., H. Okamoto, Y. Murayama, A. Numaguti, A. Higurashi, and T. Nakajima. 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins, J. Geophys. Res., 105 (D14), 17853-17873.
Tegen, I, and I. Fung, 1995: Contribution to the atmospheric mineral aerosol load from land surface modification. Geophys. Res. Lett, 100 (D9), 18707-18726, doi:10.1029/95JD02051.
Tegen, I. and K. Schepanski. 2009: The global distribution of mineral dust, IOP Conf. Series: Earth and Environmental Science, 7, 012001, doi:10.1088/1755-1307/7/1/012001.
Tian, S.-F., M. Inoue, and M. Du. 2007: Influence of dust storm frequency in northern China on fluctuations of Asian dust frequency observed in Japan, SOLA, 3, 121–124, doi:10.2151/sola.2007- 031.
Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason. 1998: Derivation of aerosol properties from a satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res., 103, 17099-17110.
Uno, I., H. Amano, S. Emori, K. Kinoshita, I. Matsui, and N. Sugimoto. 2001: Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation, J. Geophys. Res., 106 (D16), 18331-18344.
Wang, J. and S. A. Christopher. 2003: Intercomparison between satellite derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies, Geophys.Res. Lett., 30(21), 2095, doi:10.1029/2003GL018174.
World Meteorological Organization (WMO). 1974: Manual on Codes, Vol. I. International Codes, WMO Publ., 306, Geneva.
World Meteorological Organization, 2008: Guide to Meteorological Instruments and Methods of Observation, seventh ed. WMO-No. 8, Geneva, Switzerland.
Yue, X., H. J. Wang, H. Liao, and K. Fan. 2010: Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions, J. Geophys. Res., 115, D04201, doi:10.1029/2009JD012063.

Zhou, L.M., R.K. Kaufmann, Y.Tian, R.B.Myneni, and C.J.Tucker. 2003: Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999, J. Geophys. Res., 108(D1), 4004, doi:10.1029/2002JD002510
Zhu, A., Ramanathan, V., Li, F., Kim, D. 2007: Dust plumes over the Pacific, Indian, and Atlantic Oceans: climatology and radiative impact. J. Geophys. Res. 112, D16208, doi:10.1029/2007JD008427.
Zou. X. K and P. M. Zhai. 2004: Relationship between vegetation coverage and spring dust storms over northern China. J. Geophys. Res., 109, D03104, doi:10.1029/2003JD003913
指導教授 劉振榮(Gin-Rong Liu) 審核日期 2016-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明