博碩士論文 962201005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.237.51.35
姓名 程宇綸(Yu-Luen Cheng)  查詢紙本館藏   畢業系所 數學系
論文名稱
(A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers
★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers
★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems
★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization
★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在工程應用上,我們要做一些不同自然現象的數值模擬時,需要快速、可靠、準確求出定義在一個複雜幾何圖形上的時間的3D不可壓縮Navier-Stokes方程組的數值解。為了能夠得到在邊界層附近較準確的解,通常需要高解析的網格,這表示我們需要用到大規模的平行計算。雖然已經花了很多年的研究,來尋找一個合適的方法求解定義在一個很細的網格和很大範圍的Reynolds數上的Navier-Stokes方程組,這仍然是一件很困難的計算工作。這篇論文的目的,在研究一些平行scalable的演算法,來解一個經由stabilized finite element method對空間做離散,和一系列implicit ODE integrators對時間做離散後的時間的不可壓縮Navier-Stokes方程組所產生的大型稀疏非線性系統。我們的平行演算法是以Newton-Krylov-Schwarz演算法為基礎,它包含了三個部分:一個非線性和線性的solver為inexact Newton method with backtracking和一個線性的solver來解Jacobian系統為Krylov subspace method以及一個preconditioner來加速線性solver的收斂為平行的overlapping Schwarz domain decomposition method。此外,我們的平行演算法是以PETSc為撰寫工具,並且加入一些其他的前處理和後處理軟體套件。這些套件包含(1)一個Cubit和以C語言為基礎撰寫的3D unstructured finite element網格產生器(2)一個網格的分割器ParMETIS來做平行的網格分割處理(3)一個ParaView的科學的visualization來展現數值結果和處理數據分析。我們的演算法會在台灣的一些平行機器上執行,來解三維的start-up lid-driven rectangular cavity flows,並且會說明我們演算法的平行效能。我們也會將平行的流體solver應用在數值模擬一個微流體系統內的微混合器。
摘要(英) Various numerical simulations of physical phenomena in some engineering applications often require fast, reliable, accurate numerical solutions of unsteady 3D incompressible Navier-Stokes equations defined on a complex geometry. To resolve the details of the solution in the boundary layer region, high resolution meshes are often required, which implies the need for large-scale parallel computing. Even though years of research have been spent on finding such a suitable method for solving Navier-Stokes equations on very fine meshes for a wide range of Reynolds number, it remains a difficult computing task. The goal of this thesis is to study some parallel scalable algorithms for solving large sparse nonlinear systems of equations arising from the discretization of unsteady incompressible Navier-Stokes equations, where a stabilized finite element method and a family of implicit ODE integrators are employed for the spatial and temporal discretizations, respectively. Our parallel algorithm is based on a Newton-Krylov-Schwarz algorithm, which consists of three key components: an inexact Newton method with backtracking as the nonlinear linear solver, a Krylov subspace method as the linear solver for the Jacobian systems, and a parallel overlapping Schwarz domain decomposition method as a preconditioner to accelerate the convergence rate of the linear solver. In addition, our parallel flow solver implemented by PETSc is integrated with other pre-processing and post-processing software packages. These packages include (1) A Cubit and C language based 3D unstructured finite element mesh generator; (2) a mesh partitioner, ParMETIS for the purpose of parallel processing; (3) A ParaView based scientific visualization for displaying numerical results and conducting data analysis. We report the parallel performance of our algorithms for solving three-dimensional start-up lid-driven rectangular cavity flows, which are tested on some parallel machines in Taiwan. We also present an application of the parallel flow solver to simulate numerically micromixing in a microfluidic system.
關鍵字(中) 關鍵字(英) ★ micromixer
★ parallel computing
★ lid-driven cavity
★ Navier-Stokes equations
★ Newton-Krylov-Schwarz
★ stabilized finite element method
論文目次 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Parallel implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Parallel fluid code validation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1 The steady state case of lid-driven cavity . . . . . . . . . . . . . . . . . . 12
6.2 The unsteady case of lid-driven cavity . . . . . . . . . . . . . . . . . . . 45
7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1 The geometry of micromixers . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 The parameter of numerical method . . . . . . . . . . . . . . . . . . . . 69
7.3 The simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
參考文獻 [1] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web
page, 2009. http://www.mcs.anl.gov/petsc.
[2] S. Behara and S. Mittal. Parallel finite element computation of incompressible flows.
Parallel Computing, 2008.
[3] R.L. Burden and J.D. Faires. Numerical analysis. 1988.
[4] T.P. Chiang, W.H. Sheu, and R.R. Hwang. Effect of reynolds number on the eddy
structure in a lid-driven cavity. International Journal for Numerical Methods in
Fluids, 26:557–579, 1998.
[5] J.E. Dennis and R.B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations. Society for Industrial and Applied Mathematics, 1996.
[6] W. Dettmer and D. Peri´c. An analysis of the time integration algorithms for the finite
element solutions of incompressible Navier–Stokes equations based on a stabilised
formulation. Computer Methods in Applied Mechanics and Engineering, 192(9-
10):1177–1226, 2003.
[7] J. Donea and A. Huerta. Finite element methods for flow probelms. John Wiley &
Sons Inc, 2003.
[8] S.C. Eisenstat and H.F.Walker. Globally convergent inexact Newton methods. SIAM
Journal on Optimization, 4:393, 1994.
[9] S.C. Eisenstat, H.F. Walker, S.C. Eisenstatt, and F. Walker. Choosing the forcing
terms in an inexact Newton method. SIAM Journal on Scientific Computing, 1996.
[10] L.P. Franca and S.L. Frey. Stabilized finite element methods. II: The incompressible
Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,
99(2-3):209–233, 1992.
[11] M. Garbey and Y.V. Vassilevski. A parallel solver for unsteady incompressible 3D
Navier–Stokes equations. Parallel Computing, 27(4):363–389, 2001.
[12] U. Ghia, K.N. Ghia, and C.T. Shin. High-Re solutions for incompressible flow using
the Navier-Stokes equations and a multigrid method. Journal of Computational
Physics, 48:387–411, 1982.
[13] J.L. Guermond, C. Migeon, G. Pineau, and L. Quartapelle. Start-up flows in a threedimensional
rectangular driven cavity of aspect ratio 1: 1: 2 at Re= 1000. Journal
of Fluid Mechanics, 450:169–199, 2002.
[14] M.D. Gunzburger. Finite element methods for viscous incompressible flows: a guide
to theory, practice, and algorithms. Academic Press, 1989.
[15] F.-N. Hwang. Some Parallel Linear and Nonlinear Schwarz Methods with Applications
in Computational Fluid Dynamics. PhD thesis, University of Colorado at
Boulder, 2004.
[16] V. John. On the efficiency of linearization schemes and coupled multigrid methods in
the simulation of a 3D flow around a cylinder. International Journal for Numerical
Methods in Fluids, 50:845–862, 2006.
[17] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, 1987.
[18] T.G. Kang, M.K. Singh, T.H. Kwon, and P.D. Anderson. Chaotic mixing using
periodic and aperiodic sequences of mixing protocols in a micromixer. Microfluidics
and Nanofluidics, 4(6):589–599, 2008.
[19] K. Kundu Pijush. Fluid mechanics. Academic press, 1990.
[20] S.W. Lee, D.S. Kim, S.S. Lee, and T.H. Kwon. A split and recombination micromixer
fabricated in a PDMS three-dimensional structure. Journal of Micromechanics
and Microengineering, 16(5):1067–1072, 2006.
[21] Robin H. Liu, Mark A. Stremler, Kendra V. Sharp, Michael G. Olsen, Juan G. Santiago,
Ronald J. Adrian, Hassan Aref, David J. Beebe, Member, and IEEE. Passive
mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical
Systems, 9:190–197, 2000.
[22] S.A. Mohsen Karimian and A.G. Straatman. Discretization and parallel performance
of an unstructured finite volume Navier-Stokes solver. International Journal for
Numerical Methods in Fluids, 52(6), 2006.
[23] R. Rannacher, M. Sch¨afer, and S. Turek. Evaluation of a CFD benchmark for laminar
flows. Technical report, Technical Report, Universit¨at Heidelberg, 1998, SFB 359,
Preprint 98-23.
[24] J.N. Reddy and D.K. Gartling. The finite element method in heat transfer and fluid
dynamics. CRC press, 2001.
[25] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2003.
[26] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 7(3):856–869, 1986.
[27] T.R. Shih and C.K. Chung. A high-efficiency planar micromixer with convection and
diffusion mixing over a wide Reynolds number range. Microfluidics and Nanofluidics,
5(2):175–183, 2008.
[28] E.Y. Tafti, R. Kumar, and H.J. Cho. Effect of laminar velocity profile variation on
mixing in microfluidic devices: The sigma micromixer. Applied Physics Letters,
93:143504, 2008.
[29] K.Y. Tung and J.T. Yang. Analysis of a chaotic micromixer by novel methods of
particle tracking and FRET. Microfluidics and Nanofluidics, 5(6):749–759, 2008.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明