博碩士論文 962201010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.239.160.113
姓名 蔡志陽(Chih-Yang Tsai)  查詢紙本館藏   畢業系所 數學系
論文名稱
(I-Convergence of Korovkin Type Approximation Theorems for Unbounded Functions)
相關論文
★ 關於超循環算子的一些基本性質★ r維近似算子的收斂速度
★ 摺合型積分方程之收斂性,可微性與可容許空間的研究。★ 某些正線性算子作用在無界連續函數上的估計
★ 橢圓形數值域之四階方陣★ Daugavet方程式在算子序列與 算子函數下的推廣
★ 數值域邊界上之線段★ 正規壓縮算子與正規延拓算子
★ 論Lyons不等式和關於Meyer-König-Zeller近似算子的估計★ 加權排列矩陣及加權位移矩陣之數值域
★ 可分解友矩陣之數值域★ 可分解友矩陣之研究
★ 關於函數及積分,演化方程式解之行為的探討★ 關於巴氏空間上連續函數的近乎收斂性
★ 三角不等式與Jensen不等式之精化★ 缺陷指數為1的矩陣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文將先介紹較統計收斂與A-統計收斂更為一般化的理想收斂,研究主軸為正線性算子,並以理想收斂來討論無界連續函數空間上的Korovkin近似定理。更進一步將所討論的空間擴展至高維度算子值或實數值函數空間。
摘要(英) The purpose of this thesis is to study a Korovkin type approximation of unbounded functions by means of ideal convergence. The concept of ideal convergence is the generalizations of statistical convergence and A-statistical convergence. We will discuss the approximations of unbounded, operator-valued and real-valued functions with noncompact supports in R^m.
關鍵字(中) ★ 理想收斂
★ Korovkin 近似型定理
關鍵字(英) ★ Korovkin type approximation theorem
★ I-convergence
論文目次 1.Introduction............................................1
2.Some basic definitions and results......................3
3.I-convergence of unbounded functions....................9
4.I-convergence of unbounded m-parameter functions.......16
5.Examples...............................................24
References...............................................35
參考文獻 [1] K. Demirci, I-limit superior and limit inferior, Math. Commun., 6 (2001), 165-172.
[2] O. Duman, M.K. Khan, and C. Orhan, A-statistical convergence of approximating operators, Math. Inequalities and Appl., 6 (2003), 689-699.
[3] O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161 (2004), 187-197.
[4] O. Duman and C. Orhan, Rates of A-statistical convergence of positive linear operators, Applied Math. Letters, 18 (2005), 1339-1344.
[5] E. Erkus and O. Duman, A Korovkin type approximaiton theorem in statistical sense, Studia Sci. Math. Hungar., 43 (2006), 285-294.
[6] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
[7] A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math., 95 (1981), 293-305.
[8] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
[9] P.P. Korovkin, Linear Operators and Theory of Approximation, Hindustan Publ. Comp., Delhi, 1960.
[10] P. Kostyrko, M. Macaj, and T. Salat, I-convergence, Real Anal. Exchange, 26 (2000), 669-686.
[11] J.E. Marsden and M.J. Hoffman, Elementary Classical Analysis, 2nd ed., W.H. Freeman and Comp., 1993.
[12] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Tran. Amer. Math. Soc., 347 (1995), 1811-1819.
[13] H.I. Miller and C. Orhan, Statistical (T) rates of convergence, Glasnik Matematicki, 39 (2004), 101-110.
[14] A. Nabiev, S. Pehlivan, and M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math., 11 (2007), 569-576.
[15] S.-Y. Shaw, Approximation of unbounded functions and applications to representations of semigroups, J. Approx. Theory, 28 (1980), 238-259.
[16] S.-Y. Shaw and C.-C. Yeh, Rates for approximation of unbounded functions by positive linear operators, J. Approx. Theory, 57 (1989), 278-292.
[17] H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
指導教授 蕭勝彥、高華隆
(Sen-Yen Shaw、Hwa-Long Gau)
審核日期 2009-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明