博碩士論文 962201015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.206.48.142
姓名 黃巧育(Chiau-Yu Huang)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation
★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers
★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers
★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers
★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems
★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization
★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當一些像雷諾數 (Reynolds number) 的物理參數被改變時,通常可以觀察到分歧現象 (Bifurcation) 所造成的過渡和不穩定的模態 (modes)。這篇論文的目的在利用平行化的 pseudo-transient continuation 演算法來預測在管壁突然性擴張的水流上所產生的對稱破壞性分歧的臨界點。為此,我們利用穩定化有限元素法 (stabilized finite element method) 對不可壓縮的 Navier-Stokes 方程做空間離散化並得到非線性的偏微分代數方程式 (PDAE’’s)。其中一種檢測 PDAE’’s 常態解 (stationary solution) 之穩定性的方法,是應用 pseudo-transient continuation 去討論受到干擾 (perturbation) 的常態解在一段時間後是否會回到原本的狀態。本文利用穩定性 backward Euler’’s 方法當作 time integrator,在每個 time step 所產生的非線性系統是由完全平行化的 Newton-Krylov-Schwarz 演算法來解。
從平行電腦所得到的數值結果顯示,我們的平行化 pseudo-transient continuation 演算法是非常有效率的,並且我們所觀察到的分歧現象和文獻上的實驗和數值結果趨勢相符。此外,我們在擴張比例 (expansion ratio) 較小時,會注意到一個有趣的現象—imperfect pitchfork bifurcations,進而延誤 bifurcation point 的發生,我們推測此現象乃因數值模擬時所使用的不對稱且非結構的網格。
摘要(英) In fluid dynamics, bifurcations phenomena, which provide the modes of transitions and instability when some physical parameter such as the Reynolds number is varied, are commonly observed. The aim of this thesis is to study numerically some parallel pseudo-transient continuation algorithm for detecting the critical points of symmetry-breaking bifurcation in sudden expansion flows. For this purpose, the resulting nonlinear partial differential algebraic equations (PDAE’’s) are obtained by employing a stabilized finite element method for unsteady incompressible Navier-Stokes equations as the spatial discretization. One of classical approaches for examining the stability of a stationary solution to the PDAE’’s is to apply the so-called pseudo-transient continuation, which can be interpreted as the context of a method-of-line (MOL) approach, beginning with some perturbed stationary solution to PDAE’’s and then to investigate its time-dependent response to see whether the solution returns back to original state or not after a certain time step.
In current study, after employing unconditionally stable backward Euler’’s method as a time integrator, at each time step, the resulting nonlinear system is solved by a fully parallel Newton-Krylov-Schwarz algorithm, where inexact Newton with backtracking as a nonlinear solver and an additive Schwarz preconditioned Krylov subspace type method such as GMRES is used to solve the corresponding Jacobian systems. While the time accuracy is not our concerns, the adaptability of time step size is a key ingredient for the success of the algorithm to speed up the time-marching process.
Our numerical results obtained from a parallel machine shows that our parallel pseudo-transient continuation algorithm is very robust and efficient and also confirmed qualitatively the bifurcation with the numerical and numerical results found by other researchers. Furthermore, it is interesting to note that imperfect pitchfork bifurcations were observed especially for the case with a small expansion ratio, in which the happening of bifurcation points is delayed due to asymmetric unstructured meshes used for the numerical simulation.
關鍵字(中) ★ pseudo transient continuation
★ parallel computing
★ domain decomposition.
★ incompressible flow
★ Bifurcation
關鍵字(英) ★ pseudo transient continuation
★ parallel computing
★ domain decomposition.
★ incompressible flow
★ Bifurcation
論文目次 Tables . . . .. . . . . . . . . . . . . . . . . . . viii
Figures . . . . . . . . . . . . . . . . . . . . . . . .x
1 Introduction . . . . . . . . . . . . . . . . . . . .1
2 A review of bifurcation theory . . . . . . . . . . 4
 2.1 Problem statement . . . . . . . . . . . . . . . .4
 2.2 Bifurcation analysis . . . . . . . . . . . . . . 4
 2.3 Pitchfork bifurcations . . . . . . . . . . . . . 7
3 Applications to the 2D incompressible sudden expansion flows . . . . 10
 3.1 2D sudden expansion flows . . . . . . . . . . .10
 3.2 Navier-Stokes equations and their semi-discrete formulation . . . . 12
 3.3 Numerical methods . . . . . . . . . . . . . . . 15
  3.3.1 Pseudo-transient Newton-Krylov-Schwarz method $Psi$NKS . . . . 16
  3.3.2 Generalized eigenvalue problem . . . . . . 18
4 Numerical results . . . . . . . . . . . . . . . . . 20
 4.1 Numerical experiment setup and grid tsting. . . 20
 4.2 $Psi$NKS algorithmic parameter tuning. . . . . 26
 4.3 Bifurcation predictions. . . . . . . . . . . . 32
5 Conclusions . . . . . . . . . . . . . . . . . . . . 43
Bibliography. . . . . . . . . . . . . . . . . . . . . 44
參考文獻 [1] ParaView homepage. http://www.paraview.org.
[2] Online CUBIT user’s manual, 2006. http://cubit.sandia.gov/documentation.html.
[3] N. Alleborn, K. Nandakumar, H. Raszillier, and F. Durst. Further contributions
on the two-dimensional flow in a sudden expansion. Journal of Fluid Mechanics,
330:169–188, 1997.
[4] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes,
B.F. Smith, and H. Zhang. PETSc Web page, 2009. http://www.mcs.anl.gov/petsc.
[5] F. Battaglia, S.J. Tavener, A.K. Kulkarni, and C.L. Merkle. Bifurcation of low
Reynolds number flows in symmetric channels. AIAA Journal, 35:99–105, 1997.
[6] W. Cherdron, F. Durst, and J.H. Whitelaw. Asymmetric flows and instabilities in
symmetric ducts with sudden expansions. Journal of Fluid Mechanics, 84:13–31,
1978.
[7] K.A. Cliffe, T.J. Garratt, and A. Spence. Iterative methods for the detection of Hopf
bifurcations in finite element discretisation of incompressible flow problems. SIAM
Journal on Scientific Computing, 4:337–356, 1992.
[8] K.A. Cliffe, T.J. Garratt, and A. Spence. Eigenvalues of the discretized Navier-
Stokes equation with application to the detection of Hopf bifurcations. Advances in
Computational Mathematics, 1:337–356, 1993.
[9] K.A. Cliffe, T.J. Garratt, and A. Spence. A modified Cayley transform for the discretized
Navier-Stokes equations. Applications of Mathematics, 38:281–288, 1993.
[10] T.S. Coffey, C.T. Kelley, and D.E. Keyes. Pseudo-transient continuation and
differential-algebraic equations. SIAM Journal on Scientific Computing, 25:553–
569, 2004.
[11] V.F. De Almeida and J.J. Derby. Construction of solution curves for large twodimensional
problems of steady-state flows of incompressible fluids. SIAM Journal
on Scientific Computing, 22:285–311, 2000.
[12] D. Drikakis. Bifurcation phenomena in incompressible sudden expansion flows.
Physics of Fluids, 9:76–87, 1997.
[13] F. Durst, A. Melling, and J.H. Whitelaw. Low Reynolds number flow over a plane
symmetric sudden expansion. Journal of Fluid Mechanics, 64:111–128, 1974.
[14] F. Durst, J.C.F. Pereira, and C. Tropea. The plane symmetric sudden-expansion flow
at low Reynolds numbers. Journal of Fluid Mechanics, 248:567–581, 1993.
[15] R.M. Fearn, T. Mullin, and K.A. Cliffe. Nonlinear flow phenomena in a symmetric
sudden expansion. Journal of Fluid Mechanics, 211:595–608, 1990.
[16] L.P. Franca and S.L. Frey. Stabilized finite element methods. II: The incompressible
Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,
99:209–233, 1992.
[17] L.P. Franca, S.L. Frey, and T.J.R. Hughes. Stabilized finite element methods. I: Application
to the advective-diffusive model. Computer Methods in Applied Mechanics
and Engineering, 95:253–276, 1992.
[18] T.J. Garratt, G. Moore, and A. Spence. Two methods for the numerical detection
of Hopf bifurcations. Bifurcation and Chaos: Analysis, Algorithms, Applications,
97:129–134, 1991.
[19] T.J. Garratt, G. Moore, and A. Spence. A generalized Cayley transform for the numerical
detection of Hopf bifurcations in large systems. Contributions in Numerical
Mathematics, 2:177–195, 1993.
[20] V. Girault and P.A. Raviart. Finite Element Approximation of the Navier-Stokes
Equations. Springer, 1979.
[21] V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes Equations:
Theory and Algorithms. Springer, 1986.
[22] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer-
Verlag, 1984.
[23] I.G. Graham, A. Spence, and E. Vainikko. Parallel iterative methods for Navier-
Stokes equations and application to stability assessment. Concurrency and Computation:
Practice and Experience, 15:1151–1168, 2003.
[24] P.M. Gresho, D.K. Gartling, J.R. Torczynski, K.A. Cliffe, K.H. Winters, T.J. Garratt,
A. Spence, and J.W. Goodrich. Is the steady viscous incompressible twodimensional
flow over a backward-facing step at Re= 800 stable? International
Journal for Numerical Methods in Fluids., 17:501–541, 1993.
[25] P.M. Gresho and R.L. Sani. Incompressible Flow and the Finite Element Method.
Volume 2: Incompressible Flow and Finite Element. John Wiley and Sons, 1998.
[26] W.D. Gropp, D.K. Kaushik, D.E. Keyes, and B.F. Smith. High-performance parallel
implicit CFD. Parallel Computing, 27:337–362, 2001.
[27] M.D. Gunzburger and J.S. Peterson. Predictor and steplength selection in continuation
methods for the Navier-Stokes equations. Computers and Mathematics with
Applications, 22:73–81, 1991.
[28] S.K. Hannani, M. Stanislas, and P. Dupont. Incompressible Navier-Stokes computations
with SUPG and GLS formulations - a comparison study. Computer Methods
in Applied Mechanics and Engineering, 124:153–170, 1995.
[29] T. Hawa and Z. Rusak. The dynamics of a laminar flow in a symmetric channel with
a sudden expansion. Journal of Fluid Mechanics, 436:283–320, 2001.
[30] V. Hernandez, J.E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Transactions on Mathematical Software,
31:351–362, 2005.
[31] D.J. Higham. Trust region algorithms and timestep selection. SIAM Journal on
Numerical Analysis, 37:194–210, 2000.
[32] H. Jiang and P.A. Forsyth. Robust linear and nonlinear strategies for solution of the
transonic Euler equations. Computers and Fluids, 24:753–770, 1995.
[33] M. Kadja and G. Bergeles. Numerical investigation of bifurcation phenomena occurring
in flows through planar sudden expansions. Acta Mechanica, 153:47–61,
2002.
[34] G. Karypis. METIS homepage. http://cubit.sandia.gov/documentation.html.
[35] C.T. Kelley and D.E. Keyes. Convergence analysis of pseudo-transient continuation.
SIAM Journal of Numerical Analysis, 35:508–523, 1998.
[36] R.B. Lehoucq and A.G. Salinger. Large-scale eigenvalue calculations for stability
analysis of steady flows on massively parallel computers. International Journal for
Numerical Methods in Fluids, 36:309–327, 2001.
[37] R.B. Lehoucq and J.A. Scott. Implicitly Restarted Arnoldi Methods and Eigenvalues
of the Discretized Navier Stokes Equations. Rutherford Appleton Laboratory, 1997.
[38] A. Masud and T.J.R. Hughes. A space-time Galerkin/least-squares finite element
formulation of the Navier-Stokes equations for moving domain problems. Computer
Methods in Applied Mechanics and Engineering, 146:91–126, 1997.
[39] S. Mishra and K. Jayaraman. Asymmetric flows in planar symmetric channels
with large expansion ratio. International Journal for Numerical Methods in Fluids,
38:945–962, 2002.
[40] J. Mizushima and Y. Shiotani. Structural instability of the bifurcation diagram for
two-dimensional flow in a channel with a sudden expansion. Journal of Fluid Mechanics,
420:131–145, 2000.
[41] M. Morzy´nski, K. Afanasiev, and F. Thiele. Solution of the eigenvalue problems
resulting from global non-parallel flow stability analysis. Computer Methods in
Applied Mechanics and Engineering, 169:161–176, 1999.
[42] T. Mullin and C. Blohm. Bifurcation phenomena in a Taylor-Couette flow with
asymmetric boundary conditions. Physics of Fluids, 13:136, 2001.
[43] D. Peric and S. Slijepcevic. Computational modelling of viscoplastic fluids based on
a stabilised finite element method. Engineering Computations, 18:577–591, 2001.
[44] J.B. Perot. An analysis of the fractional step method. Journal of Computational
Physics, 108:51–58, 1993.
[45] O. Pironneau. Finite Element Methods for Fluids. John Wiley and Sons, 1989.
[46] J. Sanchez, F. Marques, and J.M. Lopez. A continuation and bifurcation technique
for Navier-Stokes flows. Journal of Computational Physics, 180:78–98, 2002.
[47] M. Shapira, D. Degani, and D. Weihs. Stability and existence of multiple solutions
for viscous flow in suddenly enlarged channels. Computers and Fluids, 18:239–258,
1990.
[48] C.Y. Soong, P.Y. Tzeng, and C.D. Hsieh. Numerical investigation of flow structure
and bifurcation phenomena of confined plane twin-jet flows. Physics of Fluids,
10:2910, 1998.
[49] S.H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley Reading, 1994.
[50] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. American
Mathematical Society, 2001.
[51] T.E. Tezduyar. Stabilized finite element formulations for incompressible flow computations.
Advances in Applied Mechanics, 28:1–44, 1991.
[52] V. Thom´ee. Galerkin Finite Element Methods for Parabolic Problems. Springer,
1997.
[53] G. Tiesinga. Multi-level ILU preconditioners and continuation methods in fluid dynamics.
PhD thesis, University of Groningen, 2000.
[54] E.M. Wahba. Iterative solvers and inflow boundary conditions for plane sudden
expansion flows. Applied Mathematical Modelling, 31:2553–2563, 2007.
[55] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Butterworth-
Heinemann, 2000.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2009-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明