博碩士論文 962201029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.231.21.123
姓名 湯惟策(Wei-tse Tan)  查詢紙本館藏   畢業系所 數學系
論文名稱
(An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers
★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers
★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers
★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems
★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization
★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文針對半導體儀器作數值模擬,運用 inexact Newton’’s method 對 drift-diffusion model 求解。考慮原型的 drift-diffusion model 包含:電子電壓,電子濃度,電洞濃度等三個未知變數。數值實驗使用 drift-diffusion model 模擬一個一維的二極體幾何模型。我們討論兩個不同的 non-dimensionalization approach 對 Newton’’s method 的影響並分析 GMRES method 使用不同的 preconditioner 在 Newton’’s method 的結果。實驗結果顯示使用不同的 non-dimensionalization approach 將影響 Newton’’s method 的收斂情形。在實驗中我們使用 US non-dimensional approach (Uniform Scaling non-dimensional approach) 有效的提供 Newton’’s method 一個良好的環境。根據實驗結果發現增加 block Jacobi preconditioner 中 block 的數量幾乎不影響 Newton’’s method 的迭代次數,更甚者即便是增加網格點的數目 Newton’’s method 的迭代次數依然不受影響。
摘要(英) The aim of this thesis to employ an inexact Newton’’s method to solve discrete drift-diffusion model in semiconductor device simulations, where the drift-diffusion model in the primitive form consists of the electrostatic potential , the electron concentrations and the hole concentrations. Consider a 1D diode simulations modeled by drift-diffusion as a test case. We discuss the effect on Newton’’s method by two non-dimensionalization approaches and the application of GMRES method without/ with diagonal and block Jacobi. It is true that the non-dimensional approach will affect the converge of Newton’’s method. In our case, we choose US non-dimensional approach (Uniform Scaling non-dimensional approach) and it will make a great environment for Newton’’s method. From numerical experiment, we find that increasing number of blocks for a block Jacobi preconditioner almost doesn’’t affect the number of Newton’’s iterations and decreasing grid size for a block Jacobi preconditioner also doesn’’t affect the Newton’’s iterations neither.
關鍵字(中) ★ semiconductor
★ GMRES
★ finite difference
★ drift-diffusion
★ Newton's method
關鍵字(英) ★ drift-diffusion
★ Newton's method
★ finite difference
★ GMRES
★ semiconductor
論文目次 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 The drift-diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 The drift-diffusion model in semiconductor devices . . . . . . . . . . . . 2
2.2 Two Non-dimensionalization approaches . . . . . . . . . . . . . . . . . . 3
3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The inexact Newton method with backtracking for semiconductor algorithm 8
4 Numerical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 The drift-diffusion model for the n
參考文獻 [1] S. Aˇsmontas, J. Gradauskas, A. Suˇzied˙elis, and G. Valuˇsis. Submicron semiconductor
structure for microwave detection. Microelectronic Engineering, 53(1-4):553–
556, 2000.
[2] J.F. Burgler, W.M. Coughran Jr, and W. Fichtner. An adaptive grid refinement strategy
for the drift-diffusionequations. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 10(10):1251–1258, 1991.
[3] R.C. Chen and J.L. Liu. An iterative method for adaptive finite element solutions
of an energy transport model of semiconductor devices. Journal of Computational
Physics, 189(2):579–606, 2003.
[4] R.C. Chen and J.L. Liu. Monotone iterative methods for the adaptive finite element
solution of semiconductor equations. Journal of Computational and Applied
Mathematics, 159(2):341–364, 2003.
[5] R.C. Chen and J.L. Liu. A quantum corrected energy-transport model for nanoscale
semiconductor devices. Journal of Computational Physics, 204(1):131–156, 2005.
[6] R.C. Chen and J.L. Liu. An accelerated monotone iterative method for the
quantum-corrected energy transport model. Journal of Computational Physics,
227(12):6226–6240, 2008.
[7] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM Journal
on Numerical Analysis, 19:400–408, 1982.
[8] S.C. Eisenstat, H.F. Walker, S.C. Eisenstatt, and F. Walker. Choosing the forcing
terms in an inexact Newton method. SIAM J. Sci. Comput, 1996.
[9] H. K. GUMMEL. A Self -Consistent Iterative Scheme for One-Dimensional Steady
State Transistor Calculations. IEEE Trans, ED-11(2):455–465, 1964.
[10] M. Hansen. Maxwells Equations. 2004.
[11] L. Hsiao and S. Wang. Quasineutral limit of a time-dependent drift–diffusion–
Poisson model for pn junction semiconductor devices. Journal of Differential Equations,
225(2):411–439, 2006.
[12] Joseph W. Jerome. Semiconductor models: Their mathematical study and approximation,
1992.
[13] J.W. Jerome. Consistency of semiconductor modeling: an existence/stability analysis
for the stationary van Roosbroeck system. SIAM Journal on Applied Mathematics,
45:565–590, 1985.
[14] P.A. Markowich, C.A.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明