博碩士論文 962201030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.204.173.45
姓名 彭煜釗(Yu-Jhau Peng)  查詢紙本館藏   畢業系所 數學系
論文名稱 四階方陣的高秩數值域
(Higher-Rank Numerical Ranges of 4-by-4 Matrices)
相關論文
★ 橢圓形數值域之四階方陣★ 數值域邊界上之線段
★ 正規壓縮算子與正規延拓算子★ 加權排列矩陣及加權位移矩陣之數值域
★ 可分解友矩陣之數值域★ 可分解友矩陣之研究
★ 關於巴氏空間上連續函數的近乎收斂性★ 三角不等式與Jensen不等式之精化
★ 缺陷指數為1的矩陣之研究★ A-Statistical Convergence of Korovkin Type Approximation
★ I-Convergence of Korovkin Type Approximation Theorems for Unbounded Functions★ 位移算子其有限維壓縮算子的反矩陣
★ 2×2方塊矩陣的數值域★ 加權位移矩陣的探討與廣義三角不等式的優化
★ 喬登方塊和矩陣的張量積之數值域半徑★ 3×3矩陣乘積之數值域及數值域半徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討一個四階方陣A,其高秩數值域的幾何圖形是什麼樣的圖形。我們將四階方陣的秩二數值域分類。對於一個四階方陣A,我們經由考慮A的associated polynomial來對秩二數值域作分類。對於每一個分類,我們將完整地描述它們的幾何圖形。
摘要(英) Let $A$ be an $n$-by-$n$ matrix. For $1leq k leq n$, the rank-$k$ numerical range of $A$ is defined and denoted by $Lambda_k(A) = {lambdainmathbb{C}: PAP=lambda P mbox{ for some rank-{it k} orthogonal projection $P$}}$. In this thesis, we give a complete description of the higher-rank numerical ranges of $4$-by-$4$ matrices. We classify the rank-$2$ numerical ranges of $4$-by-$4$ matrices. Our classification is based on the factorability of the associated polynomial $p_A(x,y,z)equiv mathrm{det}(xmathrm{Re,}A + ymathrm{Im,}A + zI_4)$ of a $4$-by-$4$ matrix $A$. For each class, we also completely determine the shape of the rank-$2$ numerical range of a $4$-by-$4$ matrix.
關鍵字(中) ★ 數值域(Numerical Range)
★ 高秩數值域(Higher-Rank Numerical Range)
★ Kippenhahn Curve
關鍵字(英) ★ Kippenhahn Curve
★ Higher-Rank Numerical Range
★ Numerical Range
論文目次 1 Introduction --1
2 Preliminaries --2
2.1 Basic properties for numerical ranges --2
2.2 Kippenhahn curve --4
2.3 Higher-rank numerical ranges --5
2.4 Numerical ranges and higher-rank numerical ranges of 3 × 3 Matrices --8
3 Higher-Rank Numerical Ranges of 4 × 4 Matrices --9
3.1 Four linear factors --11
3.2 Two linear factors and a quadratic irreducible factor --13
3.3 Two quadratic irreducible factors --16
3.4 A linear factor and a cubic irreducible factor --18
3.5 $p_A$ is irreducible --35
References --37
參考文獻 [1] M.D. Choi, M. Giesinger, J. A. Holbrook, D.W. Kribs, Geometry of higher-rank numerical ranges, Linear and multilinear Algebra, 56 (2008), 53-64.
[2] M.D. Choi, J.A. Holbrook, D. W. Kribs, K. Yczkowski, Higher-rank numerical ranges of unitary and normal matrices, Operators and Matrices, 1 (2008), 409-426.
[3] M.D. Choi, D. W. Kribs, K. Yczkowski, Higher-rank numerical ranges and compression problems, Linear Algebra Appl. 418 (2006), 828-839.
[4] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985.
[5] D.S. Keeler, L. Rodman and I.M. Spitkovsky, The numerical range of 3 × 3 matrices, Linear Algebra Appl. 252 (1997), 115-139.
[6] F. Kirwan, Complex Algebraic Curves, Cambridge Univ. Press, 1992.
[7] C.K. Li, Y.T. Poon, N.S. Sze, Condition for the higher rank numerical range to be non-empty, Linear and Multilinear Algebra, in press, preprint, http://arxiv.org/abs/0706.1540.
[8] C.K. Li, N.S. Sze, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Amer. Math. Soc. 136 (2008), 3013-3023.
[9] H.J. Woerdeman, The higher rank numerical range is convex, Linear and Multilinear Algebra, 56 (2008), 65-67.
[10] P.Y. Wu, Numerical Ranges of Hilbert Space Operators, preprint.
指導教授 高華隆(Hwa-Long Gau) 審核日期 2009-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明