博碩士論文 962202006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.175.191.168
姓名 李弘義(Hung-Yi Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱 龐加萊─史奈德相對論架構下的古典與量子力學
(Classical and Quantum Mechanics in Poincaré-Snyder Relativity)
相關論文
★ 違反R-parity之超對稱標準模型下, 夸克-純量場一階費曼圖對中子電耦極矩之貢獻★ 無R超對稱標準模型中輕子的輻射衰變
★ 超對稱無R宇稱下的電子電偶極矩★ Lie Algebra Contraction and Relativity Symmetries
★ 伽利略座標下的電磁學與龐加萊-史奈德相對論下的電磁學★ Coherent state and co-adjoint orbits on irreducible representations of SU(4)
★ 無R宇稱超對稱裡的輕子味違反希格斯衰變★ 複數勞倫茲對稱
★ Wigner-Weyl′s transform and its contraction★ Effective Theories for Supersymmetric Nambu-Jona-Lasinio Models established through Functional Integration
★ Kähler Product and Symmetry Data in Quantum Mechanics
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據最近提出的量子相對論,即一個關於「量子時空」的相對論,我們提出龐加萊-史奈德相對論作為介於一般熟悉的愛因斯坦、伽利略相對論與量子相對論之間的相對論。由於其代數結構的優越性,類伽利略代數的數學性質在建構龐加萊-史奈德的動力學時皆可被使用。我們寫下古典力學和量子力學的正則形式並討論一些它突出的特色和物理意涵。我們特別研究自由粒子的正則實現和一個經過簡化的群量子化過程。在龐加萊-史奈德架構下的正則動力學最重要的結果是勞侖茲變換可以被看成一種正則變換。群量子化的圖像指出不同於愛因斯坦代數,龐加萊-史奈德代數允許非平凡的U(1) 中心荷,正則對易關係從中自然地浮現出來。本篇論文是以龐加萊-史奈德相對論的架構研究量子相對論中關於σ座標的物理的第一步嘗試。未來的研究可能帶出實驗上可檢驗的結果。
摘要(英) Based on the recently proposed Quantum Relativity theory, a relativity of the `quantum spacetime’’, we introduce the Poincaré-Snyder relativity as an intermediate relativity between the familiar Einstein/Galilean relativity and the quantum one. With the merit of its algebraic structure, mathematical properties of the Galilean-type algebra can be used while formulating dynamics in the Poincaré-Snyder relativity. We write down the canonical formulation of classical and quantum mechanics, discussing some of its salient features and plausible physics implications. In particular, we study the canonical realization of the free particle case and a simplified version of group quantization. The most significant result of canonical dynamics in Poincaré-Snyder relativity is that Lorentz transformation can be treated as a canonical transformation. The group quantization picture indicates that unlike the Einstein one, Poincaré-Snyder algebra admits a non-trivial U(1) central charge from which the canonical commutation relation naturally emerges. The present thesis is a first attempt to study the physic of sigma coordinate of the Quantum Relativity theory in the more practical Poincaré-Snyder setting. Future investigations may lead to experimental verifiable results.
關鍵字(中) ★ 量子相對論
★ 量子時空
★ 龐加萊─史奈德相對論
關鍵字(英) ★ Quantum Relativity
★ Quantum Spacetime
★ Poincaré-Snyder Relativity
論文目次 1 Introduction 1
2 Background 4
2.1 Planck Scale . . . . . . 4
2.2 Contraction and Deformation of Lie Algebra . . . . . . 8
2.2.1 Contraction . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Deformation . . . . . . . . . . . . . . . . . . . . 12
2.3 The Quantum Relativity Framework . . . . . . . . . . 16
3 Classical Mechanics in Poincaré-Snyder Relativity 22
3.1 The Poincaré-Snyder Relativity . . . . . . . . . . . 22
3.2 Canonical Formalism with Poincaré-Snyder relativity 26
3.2.1 sigma-Lagrangian and sigma-Hamiltonian .. . . . . . 26
3.2.2 Canonical Transformations and Lorentz Transformation28
3.2.3 Free Particle sigma-mechanics as an Einstein Limit..33
3.2.4 Two Particles with Interactions . . . . . . . . . . 35
4 Quantum Mechanics in Poincaré-Snyder Relativity 36
4.1 Hilbert Space Formalism of Quantum Mechanics . . . . 37
4.2 Canonical Quantization . . . . . . . . . . . . . . . 38
4.3 Quantization via Group Theoretical Argument . . . . . 40
4.3.1 Central Extension of Poincaré-Snyder Algebra. . . 40
4.3.2 Representation of the Extended Algebra . . . . . . 44
4.4 Comparison and Discussion . . . . . . . . . . . . . . 47
5 Conclusion and Outlook 49
Bibliography 52
參考文獻 [1] F. Iachello, Lie Algebras and Applications (Springer Berlin Heidelberg, 2006).
[2] A. Das and O. C. W. Kong, "Physics of quantum relativity through a linear realization," Phys. Rev. D 73, 124029 (2006).
[3] O. C. W. Kong, "A deformed relativity with the quantum hbar," Phys. Lett. B 665,28 (2008).
[4] O. C. W. Kong, "`AdS5' Geometry Beyond Space-time and 4D Noncommutative Space-time," arXiv:0906.3581v1 [gr-qc](2009).
[5] O. C. W. Kong and H.-Y. Lee, "Poincaré-Snyder Relativity with Quantization," arXiv:0909.4676v1 [gr-qc](2009).
[6] G. Amelino-Camelia, "Testable scenario for relativity with minimum length," Phys. Lett. B 510, 255 (2001).
[7] H. S. Snyder, "Quantized Space-Time," Phys. Rev. 71, 38 (1947).
[8] R. V. Mendes, "Deformations, stable theories and fundamental constants," J.Phys. A. 27, 8091 (1994).
[9] R. J. Adler, "Six easy roads to the Planck scale," arXiv:1001.1205v1 [gr-qc] (2010).
[10] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 6th ed. (John Wiley and Sons. Inc., 2001).
[11] M. Planck, "Über irreversible Strahlungsvorgänge. Fünfte Mitteilung," Königlich Preussiche Akademie der Wissenschaften (Berlin). Sitzungsberichte p. 440 (1899).
[12] M. J. Duff, L. B. Okun, and G. Veneziano, "Trialogue on the number of fundamental constants," JHEP 0203, 023 (2002).
[13] M. Levy-Nahas, "Deformation and Contraction of Lie Algebras," J. Math. Phys. 8, 1211 (1967).
[14] D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, "Relativistic Invariance and Hamiltonian Theories of Interacting Particles," Rev. Mod. Phys. 35, 350 (1963).
[15] O. D. Johns, Analytical Mechanics for Relativity and Quantum Mechanics (San Francisco State university, 2005).
[16] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Addison Wesely, 2002).
[17] J. A. de Azcarraga and J. M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics (Cambridge university Press, 1995).
[18] J.-M. Lévy-Leblond, "The Pedagogical Role and Epistemological Significance of Group Theory in Quantum Mechanics," Rivista Del Nuovo Cimento 4, 99 (1973).
[19] S.Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1995), Vol. 1.
[20] J.-M. Lévy-Leblond, "Galilei Group and Nonrelativistic Quantum Mechanics," J. Math. Phys. 4, 776 (1963).
[21] S. Sonego, "Quasiprobabilities and explicitly covariant relativistic quantum theory," Phys. Rev. A 44, 5369 (1991).
[22] L. E. Ballentine, Quantum Mechanics: A Modern Development (World Scientifics,1998).
[23] H. R. Brown and P. R. Holland, "The Galilean covariance of quantum Mechanics in the case of external fields," Am. J. Phys. 67, 204 (1999).
[24] M. Le Bellac and J.-M. Lévy-Leblond, "Galelean Electromagnetism," Nuovo Cimento B 14, 217 (1973).
指導教授 江祖永(Otto C.W. Kong) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明