博碩士論文 962202008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.149.234.141
姓名 胡國睿(Guo-ruei Hu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
(Methanol decomposition on Al2O3/NiAl(100) supported Au nanoclusters:A combined FTIR and TPD study)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們研究的主題是甲醇在黃金奈米粒子觸媒模型系統上的分解反應。利用熱脫質譜術與反射式傅立葉紅外線光譜儀來進行實驗。實驗流程中,θ相的三氧化二鋁在真空的環境之下成長在鎳鋁合金(100)面之上。此一觸媒模型系統在我們先前的研究之中已經被我們用掃描穿隧式電子顯微鏡檢查過黃金奈米粒子在表面上的成長模式與大小分佈情形。在氧化鋁表面上,甲醇會以兩種不同的型態吸附的現象由熱脫附質譜數以及反射式紅外光譜儀之中觀察到。在有鍍金的情況下,甲醇單層的吸附特徵隨著黃金覆蓋率增加而慢慢的減少。我們從甲醇吸附在1 ML之黃金奈米粒子上的熱脫附實驗中觀測到一個一氧化碳的脫附特徵,同時在甲醇吸附在氧化鋁表面及高黃金覆蓋率的表面上則觀察不到相同的一氧化碳的脫附特徵。此一現象顯示了甲醇在特定覆蓋率的黃金奈米粒子上才會有分解的反應。在同一樣品上相對應的紅外線光譜儀的訊號,偵測到顯著的分子型態的一氧化碳的光譜訊號。此一結果與熱脫附質譜術所得的結論相同。兩個不同的分子型態的一氧化碳光譜訊號在100K時在表面曝滿飽和的甲醇曝量時被檢測到。原來在2050 cm-1的一氧化碳光譜特徵訊號在加溫到200K的時候發生一個顯著的偏移到2100 cm-1。熱脫附質譜術與反射式傅立葉紅外光譜儀都顯示出在1 ML的時候是甲醇分解效率最大的時候。在高溫的情況下鍍黃金所成長出的奈米粒子顯示出反應能力下降的現象。
摘要(英) We have studied the adsorption and decomposition of methanol on a well-defined Au model catalyst, utilizing a combination of reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). The Au model catalyst is prepared under ultrahigh vacuum (UHV) conditions on a well-ordered θ-Al2O3 film grown on NiAl(100). This model system has been characterized by scanning tunneling microscopy (STM) with respect to the growth mode and the size distribution. On Al2O3 support, two desorption states are distinguishable by the TPD and RAIRS. The monolayer desorption feature from Al2O3 is replaced by monolayer feature on gold when Au coverage increases. A CO desorption feature at 350 K is observed on 1 ML Au clusters, while the same feature is not detected on Al2O3 subtract or 6 ML Au clusters. The corresponding IR spectra of 1 ML Au clusters show strong ν(CO) intensity, which indicates the same behavior. This implies that methanol decompose on specific Au coverage. Two CO adsorption states are observed by IR at saturated methanol exposure at 100 K on 1 ML Au clusters. The ν(CO) at 2050 cm-1 shifts drastically to 2100 cm-1 when annealed to 200 K. Both TPD and RAIRS results show that 1 ML Au cluster is the most productive in decomposing CO. Both the annealed and the high temperature deposited clusters show decreasing reactivity.
關鍵字(中) ★ 熱脫附
★ 紅外光譜儀
★ 催化
★ 分解
★ 甲醇
關鍵字(英) ★ methanol
★ decomposition
★ model catalyst
★ TPD
★ FTIR
論文目次 Chapter 1 Introduction......................................... 1
Reference Chapter 1 .......................................................................................... 3
Chapter 2 Literature Survey ....................................................................................... 4
2.1 Methanol decomposition on single crystals .................................................. 4
2.2 Extraordinary properties of nanoclusters .................................................... 13
2.3 Supplement ................................................................................................ 24
Reference Chapter 2 ........................................................................................ 29
Chapter 3 Experimental Apparatus and Methods...................................................... 31
3.1 Overview ................................................................................................... 31
3.2 Ultrahigh Vacuum Chamber and Vacuum pumps ........................................ 33
3.3 Sample Cleaning instruments ..................................................................... 36
3.4 Cleanliness and ordering examination ........................................................ 39
3.6. Fourier-Transform Infrared Spectroscopy Integration ................................ 43
3.7 Temperature Programmed Desorption Integration ...................................... 48
3.8 Experiment Methods .................................................................................. 60
Reference Chapter 3 ........................................................................................ 66
Chapter 4 Results and Discussion ............................................................................ 67
4.1 Structure of the Au/Al2O3/NiAl(100) model catalyst .................................. 67
4.2 Methanol adsorption on Al2O3/NiAl(100)................................................... 67
4.3 Methanol adsorption on Au/Al2O3/NiAl(100) ............................................. 71
4.4 Methanol decomposition on Au/Al2O3/NiAl(100) ...................................... 75
4.4.1 Coverage dependence of decomposition reaction ............................. 75
4.4.2 Temperature dependence of the methanol decomposition ................. 81
4.4.3 Coverage dependence CO production and the cluster site variation .. 88
Reference Chapter 4 ................................................................................. 93
Chapter 5 Summary ................................................................................................. 96
參考文獻 CH1
[1] Petrucci, Ralph H. (2007). General Chemistry: Principles & Modern Applications (9th ed.). Prentice Hall. pp. 606.
[2] Hamnett, A. Catal. Today 1997, 38, 445-457.
[3] M. Haruta, N. Yamada, T. Kobayashi, and S. Iljima, Journal of Catalyst 115, 301-309.
[4] M. Valden, X. Lai, D.W. Goodman, Science, 281, 1647.
[5] Jorg, Libuda. Surf. Sci. 587, 55-78
CH2
[1] J.E. Parmeter, Xudong Jiang and D.W. Goodman, Surf. Sci. 240(1990) 85-100
[2] Ricardo B. Barros, Ana Rosa Garcia, and Laura M Ilharco, J. Phys. Chem. 2001, 105, 11186-11193.
[3] Simon R. Bare, J.A. Strocio and W. Ho, Surf. Sci. 150(1985) 399-418
[4] W.S. Sim, P. Gardner, and D.A. King, J. Phys. Chem. 1995, 99, 16002-16010
[5] Ch. Ammon, A. Bayer, G. Held, B. Richter, Th. Schmidt, H.-P Steinruck, Surf. Sci. 507-510 (2002) 845-850
[6] Jinlong Gong, D.W. Flaherty, R.A. Ojifinni, J.M. White and C. Buddie Mullins, J. Phys. Chem. C, 112, 5501-5509
[7] C.P. Vinod, J.W. Niemantsverdriet and B.E. Nieuwenhuys, Phys. Chem. Chem. Phys., 2005, 7, 1824-1829
[8] M. Haruta, N. Yamada, T. Kobayashi, and S. Iljima, Journal of Catalyst 115, 301-309.
[9] M. Valden, X. Lai, D.W. Goodman, Science, 281, 1647.
[10] S. Schauermann, J. Hoffmann, V. Johanek, J. Hartmann, J. Libuda, , and H-J Freund, Catalysis Letters ,84 No. 3-4, 209
[11] Shrikrishna D. Sartale, Hong-Wan Shiu, Ming-Han Ten, Won-Ru Lin, Meng-Fan Luo, Yin-Chang Lin, and Yao-Jane Hsu, J. Phys. Chem. C, 112, 6, 2066-2073
3 0
[12] M. M. Schubert, M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Power
Sources 84, 175 (1999)
[13] T. V. Choudhary, D.W. Goodman, Catalysis Today 77, 65 (2002)
[14] B. C. Bond, Surf. Sci. 156, 966 (1985)
[15] H. Sakuri, M. Haruta, Catal.Today 29, 361 (1996)
[16] A. Ueda, M. Haruta, Gold Bull 32, 3 (1999)
[17] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998)
[18] S. Schauermann, J. Hoffmann, V. Jonahek, J. Hartmann and J. Libuda, Phys. Chem. Chem. Phys., 2002, 4, 3909-3918.
CH3
[1] Surface and Interface of Solids, Second Edition. Springer-Verlag
[2] 真空儀器 國家出版社
[3] SPECS, IQE 11/35 Ion Source Manual
[4] Oxford Scientific, OS-VAP Electron Beam Evaporator Operating Manual
[5] Surface Chemistry, Elaine M. McCash
[6] ABB Bomen FTLA2000 Fourier-Transform Infrared Spectrometer Manual
[7] HgCdTe Infrared Detectors, P. Norton, Opto-Electronics Review vol. 10(3), 159–174 (2002)
[8] Principal of Instrument Analysis, SKOOG. Saunders College Publishing
[9] 近代光學
CH4
[1] S. Schauermann, J. Hoffmann and J. Libuda. Phys. Chem. Chem. Phys,. 2002, 4, 3909-3918.
[2] S. Y. Nishimura, R. F. Gibbons and N. J. Tro, J. Phys. Chem. B, 1998, 102, 6831.
[3] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu. Surf. Sci. 602(2008), 241-248.
[4] Hans G. Jenniskens, Paul W.F. Dorlandt, M.F. Kadodwala, A.W. Kleyn. Surf. Sci. 357-358 (1996) 624-628
[5] Jinlong Gong, D.W. Flaherty, R.A. Ojifinni, J.M. White and C. Buddie Mullins, J. Phys. Chem. C, 112, 5501-5509
[6] S.Y. Nishimura, R.F. Gibbons, and T.J. Tro. J. Phys. Chem. B 1998, 102, 6831-6834.
[7] M. Valden, X. Lai, D.W. Goodman, Science, 281, 1647.
[8] C.P. Vinod, J.W. Niemantsverdriet and B.E. Nieuwenhuys, Phys. Chem. Chem. Phys., 2005, 7, 1824-1829
[9] W. S. Sim, P. Gardner, and D. A. King, J. Phys. Chem. 1995, 99, 16002-16010.
[10] J.-J. Chen, Z.-C. Jiang, Y. Zhou, B.R. Chakraborty, N. Winograd, Surface Science 328 (1995) 248-262.
[11] S. Schauermann, J. Hoffmann, V. Johanek, J. Hartmann, J. Libuda, and H,-J.
9 4
Freund, Catalysis Letters Vol. 84, Nos. 3-4, December 2002.
[12] S. Schauermann, J. Hoffmann, V. Johanek, J. Hartmann and J. Libuda, Phys. Chem. Chem. Phys., 2002, 4, 3909-3918.
[13] Jorg Libuda, Surface Science 587 (2005) 55-68.
[14] Y. Jugnet, F.J. Cadete Santos Aires, C. Deranlot, L. Piccolo, J.C. Bertoliini, Surface Science 521 (2002) L639-L644.
[15] Douglas C. Meier, V. Bukhtiyarov, and D. Wayne Goodman, J. Phys. Chem. B 2003, 107, 12668-12671.
[16] Jooho Kim, Enrique Samano, and Breuce E. Koel, J. Phys. Chem. B 2006, 110, 17512-17517.
[17] Carmine Ruggiero, Peter Hollins, Surface Science 377-379 (1997) 583-586.
[18] sault, A.G., Madix. R.J., Campbell C.T. Surf.Sci. 1986, 169, Page 347
[19] L. Piccolo, D. Loffreda, F.J. Cadete Santos Aires, C. Deranlot, Y. Jugnet, P. Sautet, J.C. Bertolini, Surface Science 566-568 (2004) 995-1000.
[20] Douglas C. Meier and D. Wayne Goodman, J. Am. Chem. Soc. 2004, 126, 1892-1899.
[21] C. Lemire, R. Meyer, Sh.K. Shaikhutdinov, H.-J. Freund, Surface Science 552 (2004) 27-34.
[22] Carsten Winkler, Alexander J. Carew, Sam Haq, and Rasmita Raval, Langmuir
9 5
2003, 19, 717-721.
[23] Xingcai Guo and John T. Yates, Jr., J. Chem. Phys. 90 (11), 1 June 1989.
[24] R. Meyer, D. Lahav, T. Schalow, M. Laurin, B. Brandt, S. Schauermann, S. Guimond, T. Kluner, H. Kuhlenbeck, J. Libuda, Sh. Shaikhutdinov, H.-J. Freund, Surface Science 586 (2005) 174-182.
[25] Wai-Leung Yim, Tobias Nowitzki, Mandus Necke, Hanno Schnars, Patricia Nickut, Jurgen Biener, Monika M. Biener, Volkmar Zielasek, Katharina Al-Shamery, Thorsten Kluner, and Marcus Baumer, J. Phys. Chem. C 2007, 111, 445-451.
[26] I. Nakamura, A. Takahashi, T. Fujitani Catal Lett (2009) 129:400 403.
[27] Marcus Baumer, Jorg Libuda, Konstantin M. Neyman, Notker Rosch, Gunther Rupprechter and Hans-Joachim Freund, Phys. Chem. Chem. Phys., 2007, 9, 3541-3558.
[28] Jeff Greeley, and Manos Mavrikakis, J. Am. Chem. Soc., 2002, 124(24), 7193-7201.
指導教授 羅夢凡(Meng-fan Luo) 審核日期 2009-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明