博碩士論文 962202010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.15.235.108
姓名 吳豐宇(Feng-Yu Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 In/In2O3奈米顆粒聚合體中的超導性質探討
(Superconductivity in In/In2O3 nanoparticle assemblies)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 具有表面氧化銦絕緣層的銦奈米顆粒聚集所構成的奈米顆粒聚合體中的各個銦奈米顆粒之間存在交互作用,而本論文中藉由改變銦顆粒表面的氧化層厚度來探討超導體奈米顆粒間的交互作用。
銦奈米顆粒採用熱蒸鍍法製備,且經由不同的曝氧過程在表面滋生氧化層。本實驗所使用一組不同氧化程度的50 nm銦奈米顆粒,以及分別固定氧化物重量比例在90 %、80 %、30 %且粒徑為3.5 nm、7.5 nm、25 nm銦與氧化銦核殼結構的奈米顆粒。並由測量樣品在低溫的磁性而定義樣品的超導性。
超導奈米聚合體有兩種不同特徵的超導性質,稱為雙分量的超導行為,藉由改變樣品的氧化程度及外加磁場的強度能夠將此兩種分量區分開來,並提出可能描述超導奈米顆粒聚合體的模型,此兩分量分別來自於獨立的超導顆粒以及經由約瑟夫森界面而連接的超導體陣列所貢獻。
此模型能描述超導奈米顆粒聚合體中的各種行為:類似第二類超導體的行為、高臨界磁場、超導抗磁隨溫度轉變以及隨奈米顆粒排列緊密程度不同而改變的行為。
摘要(英) Indium nanoparticles were fabricated by thermal evaporation method and oxidized using different processes. The mean diameter and composition of sample were determined by XRD and AFM. A series of oxidation dependent experiments reveal the influence of oxidation on superconductivity in nanoparticle assembly; critical temperature is lowered after oxidation, and superconducting diamagnetic response is also suppressed substantially.
Based on the result of temperature dependent AC magnetic susceptibility measurement, two superconducting components are distinguished: the first SC component, the magnetic response caused from interparticle interaction, shows a smooth transition with high tolerance to magnetic field, and the second SC component more similar to bulk is the contribution of individual nanoparticles. Those two components are separately discovered in rarely oxidized sample and extremely oxidized one. The crossover is corresponding to the behavior of Josephson junction array; surface oxide suppresses supercurrent as insulating layer.
We use type II-like superconductor model to describe the system. Type II-like superconductor, not really type II superconductor, is nanoparticle assembly connected by Josephson junction. In this model, magnetic field is allowed to penetrate three dimensional Josephson array, but the vortex current in nanoparticle assembly is still against outer field for maintaining partial system in superconducting state. According to the model, the superconductivity in nanoparticle assembly is very sensitive to the condition of the surface and the structure of cluster.
關鍵字(中) ★ 不可逆行為
★ 超導
★ 約瑟夫陣列
★ 類二類超導體
★ 奈米顆粒
★ 表面氧化
關鍵字(英) ★ Josephson array
★ nanoparticle
★ suerconductivity
★ type II-like superconductor
★ irreversible behavior
★ surface oxidation
論文目次 摘要 I
英文摘要 II
致謝 III
目錄 V
圖目錄 VIII
第一章 緒論 1
1-1 研究方向 1
1-2 為何探討奈米系統 2
1-3 關於超導 7
1-4 近期相關研究 11
參考文獻 13
第二章 理論背景 15
2-1超導理論 15
2-2小金屬顆粒中的電子能階分裂 22
2-3包含漲落修正的反磁球體模型 24
2-4金屬奈米顆粒的自旋極化 27
參考文獻 28
第三章 實驗方法 29
3-1 樣品製備 29
3-2粒徑與結構分析 32
3-3磁性量測 39
參考文獻 40
第四章 隨氧化程度變化的超導性 41
4-1 核殼結構模型 41
4-2 樣品氧化過程 43
4-3 隨氧化程度減弱的超導性質 46
4-4 雙分量超導行為 51
4-5 顆粒間交互作用 56
參考文獻 58
第五章 奈米微粒之超導性隨磁場改變 59
5-1重度氧化奈米顆粒之超導行為 59
5-2中度氧化奈米顆粒之超導行為 64
5-3低外加磁場的超導行為 68
5-4隨磁場改變的超導行為 74
5-5類二類超導行為 77
參考文獻 88
第六章 奇異雙超導分量行為 89
6-1雙相變溫度 89
6-2第二超導分量 93
6-3第一超導分量 97
6-4在升降場中不可逆之超導行為 102
6-5在升降磁場過程中不可逆且與歷史相關的超導行為 105
參考文獻 111
第七章 結論 112
參考文獻 Chapt 1
[1] W.-H. Li, C.C. Yang, F.C. Tsao and K.C. Lee, Phys. Rev. B, 68, 184507 (2003)
[2] Yating Wangm S. Teitel and Chritistoph Dellago, J.Chem. Phys. 122, 214722 (2005)
[3] Charles P. Poole, Jr, Frank J. Owens, Introduction to nanotechnology, 14, Wiley & sons Inc. (2003)
[4] Neil W. Ashcroft, N.David Mermin, Solid state Physics, 133, Thomson Learning, Inc (1976)
[5] J. A. De Toro, J.P. Gonzalez, P. Muniz and J.M. Riveiro, Nanotechnology, 20, 085701 (2009)
[6] W.-H. Li, C. C. Yamg, F. C. Tsao, S. Y. Wu, P.J. Huang, M. K. Chung and Y. D. Tao, Phys. Rev. B, 72, 214516 (2005)
[7] Jianqing Xu, Dimitry Bedrov and Grant D. Smith, Phys. Rev. E, 79, 011704 (2009)
[8] Abraham Marmur, Langmur 20m 3517 (2004)
[9] K. Autum, Y.A. Liang, S. T. Hsieh, W. Zesh, W. P. Chan, T.W. Kenny, R. Fearing and R.J. Full, Nature, 405, 681 (2000)
[10] C.W. Wu and X. Q. Kong, Phys. Rev. E, 76, 017301 (2007)
[11] W. Meissner and R. Ochsenfeld, Naturwissenschaften, 21, 787 (1933)
[12] F. and H.London, Proc. Roy. Soc., A149, 71 (1935)
[13] J. Bardeen, L. N. Cooper and Schrieffer, Phys. Rev. 108, 1175 (1957)
[14] V.L. Ginzburg and L.D. Landau, Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950)
[15] B. D. Josephson, Phys. Lett. 1, 251 (1962)
[16] W.P. Halperin, Review of Modern Physics, 58, 533 (1986)
[17] J. von Delf, A.D. Zaikin, D.S. Golubev and W. Tichy, Phys. Rev. Lett, 77, 3189 (1996)
[18] C.T. Black, D.C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996).
[19] D.C. Ralph, S. Gueron, C.T. Black, M. Tinlham, Physica B, 280, 420 (2000)
[20] Oded Agam and Igor L. Aleiner, Phys. Rev. B, 56, R5759 (1997).
[21] Oed Agam, Ned S, Wingreen, Broris L. Altshuler, D.C. Ralph and M. Tinkham, Phys. Rev. Lett. 78, 1956 (1997).
[22] J.R. Philips, H.S.J. van der Zant, J. White and T.P. Orlando, Phys. Rev. B, 47, 5219 (1993)
[23] A. Tuohimaa, J. Passi and T. Tarhasaari, Phys. Rev. B, 61, 9711 (2000)
[24] R. De Luca, T. Di Matteo, A. Tuohimaa, J. Passi, Phys. Rev. B, 57, 1173 (1998)
[25] L. Burlachkov, Phys. Rev. B, 47, 8056 (1993)
[26] M. Pissas, E. Morairakis, D. Stamopoulos, G. Papavassiliou, V. Psycharis and S. Koutandos, Journal of superconductivity: Incorporating Novel Magnetism, 14, 615 (2001)
Chapt 2
[1] J. Bardeen, L. M. Cooper and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957)
[2] Charles Kittel, Introduction to Solid State Physics, 8th edition, 273, John Willey &Sons, Inc, 2006
[3] M. Tinkham, Introduction to superconductivity, 2nd edition, 18-19, Dover publications, Inc (1996)
[4] Neil W. Ashcroft, N.David Mermin, Solid state Physics, 739-740, Thomson Learning, Inc (1976)
[5] Hideki Matsumoto, Introduction to Superconductivity, 15, Institute of Physics, Univ. of Tsukuba
[6] M. Tinkham, Introduction to superconductivity, 2nd edition, 7, Dover publications, Inc (1996)
[7] M. Tinkham, Introduction to superconductivity, 2nd edition, 120-122, Dover publications, Inc (1996)
[8] W. P. Halperin, Review of Morden Physics, 58, 533 (1986)
[9] Zangwill, Andrew., Physics at surfaces, (1988)
[10] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi , and H. Hori1, Phys. Rev. Lett., 93, (2005)
[11] Manoj K. Harbola amd Viraht Sahni, Rev. B, 37, 745 (1988)
Chapt 3
[1] Charles Kittel, Introduction to Solid State Physics, 8th edition, p25~45, John Willey &Sons, Inc, 2006
[2] 吳泰伯、許樹恩、X光繞射原理與材料結構分析,第三版,中國材料科學學會,2004
Chapt 4
[1] Jung Hyeun Kim and Sheryl H. Ehrman Applied Physics Letters, 84 (8), 1278–1280 (2004)
[2] W. Vogel, S. Botti, S. Martelli, E. CarlinoNew, J. Chem, 1998, 749-752 (1998)
[3] D. L. Peng, T. Hihara, K. Sumiyama and H. Morilawa, J. Appl. Phys, 92, 3075-3083 (2002)
[4] W.-H. Li, C. C. Yamg, F. C. Tsao, S. Y. Wu, P.J. Huang, M. K. Chung and Y. D. Tao, Phys. Rev. B, 72, 214516 (2005)
[5] Charles Kittel, Introduction to Solid State Physics, 8th edition, 315-317, John Willey &Sons, Inc, 2006
[6] T. Shinohara, T. Sato and T. Taniyama, Phys. Rev. Lett. , 91, 197201 (2005)
[7] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
[8] M. Tinkham, Introduction to superconductivity, 2nd edition, 18-19, Dover publications, Inc (1996)
[9] M. Octavio, W. J. Skocpo, M. Tinkham, Phys. Rev. B, 17, 159 (1978)
[10] A. Tuohimaa,* J. Paasi, and T. Tarhasaari, Phys. Rev. B, 61, 9711 (1978)
[11] P. Barbara, F. M. Araujo-Moreira, A. B. Cawthrone, and C. J. Lobb, Phys. Rev. B, 60, 7489 (1999)
Chapt 5
[1] M. Tinkham, Introduction to superconductivity, 2nd edition, 296-298, Dover publications, Inc (1996)
[2] R. A. Buhrman and W. P. Halperin, Phys. Rev. Lett. 30, 692 (1973).
[3] P. Barbara, F. M. Araujo-Moreira, A. B. Cawthrone, and C. J. Lobb, Rev. B, 60, 7489 (1999)
[4] W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B, 68, 184507 (2003)
[5] M. Tinkham, Introduction to superconductivity, 2nd edition, 140-195, Dover publications, Inc (1996)
[6] Charles Kittel, Introduction to Solid State Physics, 8th edition, 315-317, John Willey &Sons, Inc, (2006)
[7] C. S. Owen and D. J. Scalapino, Phys. Rev. , 164, 538 (1967)
[8] A. M. Goldman amd P. J. Kreisman, Phys. Rev. , 164, 544 (1967)
[9] A. P. Nielsen, A. B. Cawthorne, P. Barbara, F. C. Wellstood, and C. J. Lobb, R. S. Newrock, M. G. Forrester, Phys. Rev. B, 62, 14380 (2000)
[10] M. Tinkham, Introduction to superconductivity, 2nd edition, 196-202, Dover publications, Inc (1996)
[11] M. Octavio, W. J. Skocpo, M. Tinkham, Phys. Rev. B, 17, 159 (1978)
[12] F.-Y. Wu, C.C. Yang, C.-M. Wu, C.-W. Wang and W.-H. Li, Journal of Applied Physics, 101, 1 (2007)
Chapt 6
[1] M. Pissas, E. Moraitakis, D. Stamopoulos, G. Papavassiliou,V. Psycharis, and S. Koutandos, Journal of Superconductivity: Incorporating Novel Magnetism, 14, 615 (2001)
[2] L. Burlachkov, Phys. Rev. B, 47, 8056 (1993)
指導教授 李文献(Wen-Hsien Li) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明