博碩士論文 962202011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.141.202.187
姓名 吳靖涵(Jing-Han Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Study of Zγ-> e+e-γ Process with CMS Detector at Large Hadron Collider)
相關論文
★ 宇宙射線中的質子能譜★ 建構空氣簇射探測器及測量海平面宇宙射線通量
★ 宇宙射線中正電子和電子的能譜★ 宇宙射線中的氦原子核能譜
★ 建構粒子能譜探測器及量測海平面上質子能譜分布★ 偵測大氣內水平行進之緲子用的帶電粒子偵測器陣列之可行性研究
★ 在康卜吞成像光譜儀內的gamma射線事件的分析★ 利用CMS探測器量測7TeV下的Zγ產生截面
★ 康卜吞成像光譜儀數據讀出系統★ 質子照影成像使用GEANT4蒙特卡羅模擬研究
★ LHC phenomenology and renormalization of Georgi-Machacek model★ Carbon Flux Analysis with the AMS-02 Experiment
★ 利用國際太空站上的反物質磁譜儀精確測量宇宙射線中的反質子與質子通量比的時間變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文模擬歐洲大強子對撞機在質心能量為14兆電子伏特高能量的運作下,利用CMS偵測器量測對撞產生Z0γ衰變為e+e-γ的事件。文中所使用的蒙地卡羅數據資料經由事件產生器和CMS套裝軟體完整的模擬實際碰撞情況,其中CMS軟體包含了:模擬粒子與偵測器的作用,以及偵測訊號的數位化處理。我們考慮的大量的背景樣本使模擬條件更接近真實情況。
所選取的事件在CMS偵測器涵蓋範圍內,Z0衰變產生的電子橫向動量需大於10 GeV/c且所選的光子的橫向動量也需大於20 GeV/c。我們量測到在1 fb-1數據資料中230.00個訊號事件以及126個背景事件通過所使用的選擇條件。
其中Z+jets支配了117個背景事件,支配92.86%的背景事件為主要的背景來源。此事件統計上的意義經公式計算得到16.40。
因此,利用大強子對撞機運作初期所產生的0.1 fb-1的實驗數據即可量測統計意義大於5的Z0γ事件。
摘要(英) We present a simulation of pp?Z0γ process with the e+e-γ final state at using Compact Muon Solenoid detector at Large Hadron Collider. The Monte Carlo samples are fully simulated through the event generator and CMSSW that includes the detector simulation and digitization. In order to achieve realism, we consider a large set of background samples to in this study.
The electrons from Z decay are selected with PTe > 10 GeV/c and the photon is selected with PTγ> 20 GeV/c within the coverage of CMS detector. There are 230 signal events and 126 background events measured after the Zγ selection criteria at 1 fb-1. There are 117 background event form Z+jets process that dominates 92.86 % of the background contribution. The significance is calculated to be 16.40.
As a result, the Z0γ process can be established with the signal statistical sensitivity better than 5σ in the early phase of LHC with the integrated luminosity of 0.1 fb-1.
關鍵字(中) ★ 大強子對撞機 關鍵字(英) ★ LHC
★ CMS
論文目次 1. Introduction-----------------------------------------------------------------------------------1
1.1 The Standard Model---------------------------------------------------------------------1
1.2 Triple Gauge Coupling------------------------------------------------------------------5
1.3 pp Z Production---------------------------------------------------------------------8
1.3.1 Review of Z Measurement at CDF--------------------------------------------- 9
1.3.2 Review of Z Measurement at D0------------------------------------------------9
2. The Experimental Apparatus-------------------------------------------------------------- 10
2.1 The Large Hadron Collider----------------------------------------------------------- 10
2.2 The Compact Muon Solenoid Detector--------------------------------------------- 11
2.2.1 Tracker----------------------------------------------------------------------------- 13
2.2.2 Electromagnetic Calorimeter----------------------------------------------------14
2.2.3 Hadronic Calorimeter-------------------------------------------------------------15
2.2.4 Muon Chamber--------------------------------------------------------------------15
2.2.5 Magnet----------------------------------------------------------------------------- 16
2.3 Triggers and Data Acquisition System----------------------------------------------17
2.3.1 Level-1 Triggers------------------------------------------------------------------ 17
2.3.2 High-Level Triggers--------------------------------------------------------------17
3. CMS Software Components and Simulation--------------------------------------------19
3.1 Simulation Process---------------------------------------------------------------------19
3.1.1 Event Generator-------------------------------------------------------------------19
3.1.2 Geant4 Simulation----------------------------------------------------------------19
3.1.3 Digitization------------------------------------------------------------------------20
3.2 Algorithm of Physical Quantity and Event Filter--------------------------------- 20
3.2.1 Supercluster Algorithm in the ECAL------------------------------------------20
3.2.2 Position Measurement in the ECAL-------------------------------------------- 21
3.2.3 Event Filter------------------------------------------------------------------------- 22
3.3 Objects Reconstruction--------------------------------------------------------------- 23
3.3.1 Electron Reconstruction--------------------------------------------------------- 23
3.3.2 Photon Reconstruction-----------------------------------------------------------24
3.3.3 Muon Reconstruction------------------------------------------------------------ 25
3.3.4 Jet Reconstruction---------------------------------------------------------------- 25
3.3.5 Missing ET Reconstruction------------------------------------------------------26
3.4 Signal and Background Datasets---------------------------------------------------- 26
3.4.1 The Signal Datasets---------------------------------------------------------------26
3.4.2 The Background Datasets--------------------------------------------------------29
3.4.3 The Calculation of the Expected Event Yield--------------------------------- 34
4. Data Analysis--------------------------------------------------------------------------------39
4.1 Electron Selection Criteria------------------------------------------------------------ 39
4.1.1 Electron Identification------------------------------------------------------------ 40
4.1.2 Electron Reconstructed Efficiency----------------------------------------------43
4.2 Z Boson Selection Criteria------------------------------------------------------------ 45
4.2.1 Z Boson Event Selection--------------------------------------------------------- 45
4.2.2 Z Boson Reconstructed Efficiency---------------------------------------------- 46
4.3 Photon Selection Criteria-------------------------------------------------------------- 48
4.3.1 Photon Identification------------------------------------------------------------- 48
4.3.2 Photon Reconstructed Efficiency----------------------------------------------- 49
4.4 Z0 Event Selection Criteria----------------------------------------------------------- 52
4.4.1 Z0 Selection-------------------------------------------------------------------------- 52
4.4.2 Z0 Selection Efficiency---------------------------------------------------------- 53
4.5 The Event Yields of Signal and Backgrounds-------------------------------------- 54
4.6 The Main Background----------------------------------------------------------------- 61
4.7 Systematic Uncertainties-------------------------------------------------------------- 63
4.8 Result------------------------------------------------------------------------------------ 64
5. Summary------------------------------------------------------------------------------------- 67
Reference--------------------------------------------------------------------------------------- 68
Appedix----------------------------------------------------------------------------------------- 70
參考文獻 [1] http://cpepweb.org/
[2] S. L. Glashow, Nucl. Phys., 22, 579 (1961)
[3] S. Weinberg, Phys. Rev, Lett., 19, 1264 (1967)
[4] A. Salam, Proceedings of the Eight Nobel Symposium, ed. by N.
Svartholm, Alqvist & Wiskell, Stockholm, (1968).
[5] Gordon Kane (1993), “Modern elementary particle physics”
[6] U. Baur and E. L. Berger, Phys. Rev. D 41, 1476 (1990)
[7] K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B282, 253
(1987)
[8] G. J. Gounaris et al., Phys. Rev. D 61, 073013 (2000)
[9] K. Hagiwara et al., Nucl. Phys. B282, 253 (1987)
[10] U. Baur and E.L. Berger, Phys. Rev. D 47, 4889 (1993)
[11] J. Deng., Thesis, Department of Physics, Duke University (2008)
[12] Ferapontov, Alexey V., Thesis, Department of Physics, Kansas State University
(2009)
[13] http://www.cern.ch/
[14] http://lhc.web.cern.ch/lhc/LHC_Experiments.htm
[15] http://cms.web.cern.ch/cms/index.html
[16] http://atlas.web.cern.ch/Atlas/index.html
[17] http://aliceinfo.cern.ch/
[18] http://lhcb.web.cern.ch/lhcb/
[19] CMS Collaboration, CERN/LHCC 20-016 (2006), CMS TDR 8.1
[20] J. Damgov and S. Kunori, private communication
[21] Efe Yazgan, Thesis, Department of Physics, Middle East Technical University
(2007)
[22] CMS Collaboration, CERN/LHCC 2000-38 (2000), CMS TDR 6.1
[23] CMS Collaboration, CERN/LHCC 2002-26 (2002), CMS TDR 6.2
[24] https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookGeneration
[25] GEANT4 Collaboration, Nucl. Instrum. and Methods A 506. (2003)
[26] https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookSimDigi
[27] Torbjorn Sjostrand, Leif Lonnblad, Stephen Mrenna, arXiv:hep-ph/0108264
(2001)
[28] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. Polosa, JHEP/0307, 001
(2003)
[29] https://cmsdoc.cern.ch/cms/cpt/Software/html/General/.
[30] E. Meschi, T. Monteiro, C. Seez, CMS NOTE 2001/034 (2001).
[31] R. Fruhwirth and T. Speer, Nucl. Instrum. and Methods A534 (2004) 217–221
[32] S. Beauceron, K. Kaadze, Y. Maravin, V. Brigljevic, S. Morovic, CMS NOTE
2008/047 (2008)
[33] V Brigljevic, D Ferencek, S Morovic, M Planinic, S Beauceron, S Ganjour,
G Hamel de Monchenault, S Mele, A Oh, B J Huckvale, C K Mackay and P R
Hobson, J. Phys. G: Nucl. Part. Phys. 34 (2007) N269–N295
[34] S. Beauceron, S. Ganjour, G. Hamel de Monchenault, CMS NOTE 2006/055
(2006)
[35] Baffioni S et al, J. Phys. G: Nucl. Part. Phys. 34 N23–N46 (2007)
[36] http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/Configuration/CSA07-
Production/data/CSA07Higgs_Jets_Pt50up_GEN_SIM.cfg?view=log
[37] https://twiki.cern.ch/twiki/bin/view/CMS/AachenPdfUncertainties
[38] J. Ohnemus, Phys. Rev. D 51, 1068 (1995)
指導教授 張元翰(Yuan-Hann Chang) 審核日期 2009-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明