博碩士論文 962202012 詳細資訊


姓名 曾惠足(Hui-Tsu Tseng)  查詢紙本館藏   畢業系所 物理學系
論文名稱 氮化鋁為導熱基板的發光二極體特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文中,我們成功的將thin-GaN 發光二極體(Lignt emitting diode,LED)鍵合在氮化鋁基板上,量測並分析thin-GaN LED鍵合在氮化鋁基板的光、電及導熱特性,並同時與鍵合在矽基板的thin-GaN LED做比較。
本研究使用單面拋光的氮化鋁基板,由原子力顯微鏡量測可知氮化鋁表面粗糙度約為40 nm;利用3-ω量測法測得氮化鋁基板及矽基板的熱導率分別為179 W/m-K及130 W/m-K。
利用金-銀晶圓鍵合及雷射剝離技術將高功率thin-GaN LED分別鍵合在380 μm厚、630 μm厚的氮化鋁基板及525 μm厚的矽基板上。LED的尺寸為1 × 1 mm2。當操作電流為350 mA,此三種元件測得的順向偏壓皆約為4 ± 0.2 V,發光強度分別為32 ± 4 mW、34 ± 5 mW及33 ± 7 mW,thin-GaN LED鍵合在氮化鋁基板與鍵合在矽基板的光電特性相同,因此氮化鋁適合用來作為thin-GaN LED的鍵合基板。利用順向偏壓法量測元件封裝後的接面溫度及熱阻,當操作電流為350 mA,此三種元件的接面溫度分別為112 ± 5 oC、113 ± 7 oC、117 ± 5oC,熱阻分別為18 ± 4 oC/W、18 ± 1.4 oC/W、17.6 ± 4.3 oC/W,顯示此三種元件具有相同的接面溫度及熱阻。由於氮化鋁的熱傳導率比矽高,因此LED鍵合在氮化鋁基板的熱傳導特性應比鍵合在矽基板上佳。但氮化鋁表面較粗糙,導致氮化鋁與元件的鍵合面有較大的孔隙,使得元件的熱傳導特性變差,造成元件鍵合在兩種基板上的熱傳導差異變得不明顯。
摘要(英) In this thesis, we demonstrate thin-GaN LEDs bonded on AlN substrate. The electric, optical and thermal properties of thin-GaN LEDs bonding on AlN and Si substrates were analyzed and compared.
One side published AlN substrate was used in this study. Root-mean-square (RMS) roughness of published surface was about 40 nm. 3-ω method was used to determine the thermal conductivity of AlN and Si substrates. The thermal conductivities of AlN and Si substrates were 179 W/m-k and 130 W/m-k respectively.
LED wafers were bonded on 380-μm-thick AlN, 630-μm-thick AlN, and 525-μm-thick Si substrates by Au-Ag bonding method. After wafer bonding, laser lift-off method was employed to take sapphire substrate off. Then thin-GaN LEDs with a chip size of 1 × 1 mm2 were fabricated. Forward voltages of these three kinds of LEDs with an input current of 350 mA were all about 4 V. The output power of LEDs bonding on 380-μm-thick AlN, 630-μm-thick AlN, and 525-μm-thick Si substrates which was measured in an input current of 350 mA is about 32 ± 4 mW, 34 ± 5 mW, and 33 ± 7 mW, respectively. This indicated that the electric and optical performance of thin-GaN LED bonded on AlN is as good as LEDs bonded on Si substrate. The thermal resistances and junction temperatures of LEDs were measured by diode forward voltage method. The junction temperatures of LEDs bonded on 380-μm-thick AlN, 630-μm-thick AlN, and 525-μm-thick Si substrates were about 112 ± 5 oC、113 ± 7 oC and 117 ± 5oC , respectively. The thermal resists of LEDs bonding on 380-μm-thick AlN, 630-μm-thick AlN, and 525-μm-thick Si substrates were about 18 ± 4 oC/W、18 ± 1.4 oC/W and 、17.6 ± 4.3 oC/W, respectively. Since thermal conductivity of AlN is higher than that of Si, thin-GaN LEDs bonded on AlN substrate should have better heat dissipation than LEDs bonded on Si substrate. However, the difference of thermal resistances between LEDs bonded on 380-μm-thick AlN, 630-μm-thick AlN, and 525-μm-thick Si substrates is not obvious. This should be due to that surface roughness of AlN was larger than that of Si therefore more voids were formed between Au-Ag interface when bonded on AlN. The voids between Au-Ag interface would result in the increase of thermal resistance. Hence the difference of thermal resistances between LEDs bonded on AlN and Si substrates is not obvious.
關鍵字(中) ★ 熱阻
★ thin-GaN發光二極體
★ 接面溫度
★ 晶圓鍵合
關鍵字(英) ★ junction temperature
★ thermal resist
★ wafer bonding
★ thin-GaN LED
論文目次 中文摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 導論 1
1-1 簡介 1
1-2 研究動機 3
第二章 量測原理與設備 7
2-1 3-ω 熱導率量測原理與架構 7
2-2 金-銀晶圓鍵合技術 9
2-3 雷射剝離原理 9
2-4 光電特性量測系統 10
2-5 發光二極體熱阻及接面溫度量測原理與架構 11
第三章 氮化鋁基板特性量測與分析 16
3-1 氮化鋁結構分析 16
3-2 氮化鋁表面形貌與成分分析 16
3-3 氮化鋁表面粗糙度分析 17
3-4 氮化鋁及矽基板熱導率量測 18
3-5 氮化鋁基板及矽基板之比較 18
第四章Thin-GaN LED鍵合在氮化鋁基板製作與特性分析 27
4-1 Thin-GaN LED鍵合在氮化鋁基板製作流程 27
4-2 Thin-GaN LED鍵合在氮化鋁基板光電特性分析 33
4-3 Thin-GaN LED鍵合在氮化鋁基板熱阻及接面溫度分析 35
第五章 結論與未來工作 51
5-1結論 51
5-2 未來工作 52
參考文獻 53
參考文獻 [1] H. Kim, et., Appl. Phys. Lett77, pp.1903, 2000
[2] D. S. Wuu, et. , IEEE Photon. Technol. Lett. 17, pp.288, 2005
[3] X. Guo and E. F. Schubert, JOURNAL OF APPLIED PHYSICS Vol. 90, No. 8 , pp.4191, 2001
[4] J. J. Wierer, et. APPLIED PHYSICS LETTERS VOLUME 78, No. 22, pp. 3379, 2001
[5] Ya-Ju Lee, et. JOURNAL OF DISPLAY TECHNOLOGY, VOL. 3, NO. 2, pp.118, 2007
[6] Chen-Fu Chu, et. JOURNAL of APPLIED PHYSICS, vol.95, No. 8, pp. 3916, 2004
[7] W. S. Wong et. APPLIED PHYSICS LETTERS 77, No. pp.2822, 2000
[8] W.Y. Lin, et. IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 17 No. 9, pp.1809, 2005
[9] Po Han Chen,et. IEEE Photonics technology letters, Vol. 20, pp.845, 2008
[10] M. Shatalov et., APPLIED PHYSICS LETTERS Vol. 86,No. 20 pp. 1109,2005
[11] FUMIO MIYASHIRO et., IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING TECHNOLOGY, VOL. 13, NO. 2, p.313 JUNE 1990
[12] YASUHIRO KUROKAWA, et. IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING TECHNOLOGY, VOL. CHMT-8, NO. 2, pp.247, 1985
[13]D. G. Cahill., Review of Scientific Instruments, 61(2), pp.802, 1990
[14] J.M.Gerken and W.A.Owczarski , Diffusion Welding
[15] B.R.Garreet , G.F.Blank and A.J.Randine , Hexcel Products,
Inc.Berkeley , Calif. Mar., pp.20, 1966
[16]S. C. Hsu,et. Electrochemical and Solid-State Letters,(9) G171, 2006
[17]M.K. Kelly, et. Appl. Phys. Lett. 69, pp.1749, 1996
[18]P.R. Taverier, et. J. Appl. Phys. 89, pp. 1527, 2001
[19]M. Von Allemn and A. Blastter, Laser-Beam Inteactions with Materials, Physical Principles and Applicaions, 2nd ed.,1995
[20] Y. Xi and E. F. Schubert, Appl. Phys. Lett. Vol.85, pp.2163, 2004
[21] K.Watari, et. J. Mater. Sci., Vol.26, pp. 4727,1991
[22]E. Fred Schubert, Light-Emitting Diodes, 2nd ed., 2006
指導教授 紀國鐘(G. C. Chi) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡