博碩士論文 962202023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.95.131.208
姓名 陳佳塘(Chia-Tang Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 顆粒間交互作用抑制鋁奈米微粒超導行為
(Suppression of superconductivity in Al nanoparticles by interparticle interactions.)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 使用熱蒸鍍法蒸鍍製作鋁奈米微粒,藉由X-ray Diffraction(XRD)、Scanning Electron Microscopy(SEM)、Atomic Force Microscope(AFM)以及共同體積函數等工具判斷粒徑為7.5 nm,X-ray Fluorescence Spectrometer(XRF)、結構精算軟體(GSAS)分析XRD繞射圖判定樣品成分均為鋁。磁化率量測樣品在低於2.27 K出現超導態,且得到超導溫度比塊材公認值之1.18 K高92%,推測可能是庫倫阻塞效應造成的。本論文使用弱屏蔽模型討論微觀機制。另外在外加小磁場下發現樣品抗磁率變好,與庖立順磁磁化率有關。磁性量測亦觀察到自旋極化效應,與之前論文得到的結果一致。
利用壓合工具逐次對樣品壓合改變顆粒間距,探討顆粒與顆粒之間互相影響之效應,發現超導溫度隨顆粒間距縮小而逐漸降低,回到塊材的趨勢,推測可能是由於單電子穿隧效應使得電荷分佈被改變,破壞相位,壓制超導溫度。超導抗磁磁化率也隨著顆粒間距縮小而逐漸變弱,可能是超導屏蔽電流產生的感應磁場互相影響,使的抗磁磁化率變弱。
摘要(英) Al nanoparticles were fabricated by employing the thermal evaporation method.X-ray Diffractio(XRD),Scanning Electron Microscopy(SEM) and Atomic Force Microscope(AFM) were used to determine the pariticle size. The particles size thus determined is 7.5 nm.Profile refinement analysis of the XRD pattern and the XRF experiment indicate that the sample is single phased.
The ac magnetic susceptibility were measured by Physical Property Measurement System to explore the superconducting characteristics and the superconducting transitions were observed at 2.27 K.Compared with the bulk value of Tc=1.18 K,Tc increasing 92%.We contribute this increase of Tc to the coulomb blockade effect.We discuss this phenomenon by weak screening model.When applied a small magnetic field,superconducting diamagnetic responses become more effective.Spin polarization that indicates the magnetic nature of the particles has also been observed.
To investigate the effect of the interparticle interaction,we changed the interparticle separation by cold press the sample using a hydraulic press,followed by the routine magnetic measurement.A series of samples at different packing fractions is investigated.We found that the Tc decreases with decreasing interparticle separations,and then gradually converges to bulk value.
Our observes are discussed by single electron tunneling effect that change the charging distribution,destroy the coherence phase,and depression the superconductivity.Superconducting diamagnetic susceptibility gradually weaked when the interparticle interaction becomes stronger. We use screening current model to explain this phenomenon.
關鍵字(中) ★ 庖立順磁
★ 零維超導
★ 奈米
★ 交互作用
★ 抑制
★ 鋁
關鍵字(英) ★ Pauli paramagnetism
★ Al
★ interaction
★ nanoparticle
★ suppression
★ Fluctuation
★ Zero-dimensional superconductor
論文目次 目錄
論文摘要……………………………………………………i
Abstract……………………………………………………ii
致謝…………………………………………………………iv
目錄…………………………………………………………v
圖目與表目…………………………………………………vii
第一章、簡介……………………………………………1
1-1 鋁的超導研究………………………………………1
1-2 超導體發展概述……………………………………3
1-3 塊材鋁的超導特性…………………………………9
1-4 奈米粒子的超導特性………………………………11
1-5 實驗動機……………………………………………13
第二章、樣品製備方法與實驗儀器……………………17
2-1 奈米微粒的製備……………………………………17
2-2 粒徑分析……………………………………………20
2-3 成份分析……………………………………………30
2-4 物理特性量測系統介紹……………………………33
第三章、自旋極化………………………………………37
3-1 超順磁系統…………………………………………37
3-2 奈米微粒的自旋極化………………………………39
3-3 磁化特性曲線擬合…………………………………40
3-4 熱對磁矩及飽和磁化強度之影響…………………42
第四章、奈米微粒的超導特性…………………………46
4-1 奈米微粒的超導相變理論…………………………46
4-2 鋁奈米微粒的超導溫度……………………………49
4-3 奈米微粒的超導臨界磁場…………………………59
4-4 超導溫度附近磁化率對高磁場的反應……………62
4-5 庖利順磁磁化率與外加磁場關係…………………65
第五章、顆粒間交互作用對超導參數之效應…………71
5-1 顆粒聚合體壓合模具………………………………71
5-2 顆粒間距估算………………………………………72
5-3 不同壓合密度的磁特性曲線實驗結果……………74
5-4 壓合密度對超導抗磁磁化率之影響………………77
5-5 壓合密度對超導溫度之影響………………………79
第六章、結論……………………………………………83
參考文獻………………………………………………附於各章節最後
參考文獻 第一章:
[1] B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Letters 17, 632(1966).
[2] R. W. Cohen and B. Abeles, Phys. Rev. 168, 444 (1968).
[3] J. J. Hauser, Phys. Rev. B 3, 1611 (1971).
[4] V. L. Ginzburg, Phys. Letters 13, 101 (1964) Ginzburg.
[5] O. F. Kammerer and M. Strongin, Phys. Letters 17, 224 (1965).
[6] M. Strongin, A. Paskin, O. F. Kammerer, and M. Garber, Phys. Rev.Letters 14, 362 (1965).
[7] B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Letters 17, 632(1966).
[8] R. H. Parmenter, Phys. Rev. 154, 353 (1967).
[9] D. U. Gubser and A. W. Webb, Phys. Rev. Lett. 35, 104 (1975).
[10] B. Sundqvist and O. Rapp, J. Phys. F 9, L161 (1979).
[11]P. E. Seiden, Phys. Rev. 179, 458 (1969).
[12] M. M. Dacorogna, M. L. Cohen, and P. K. Lam, Phys. Rev. B 34, 4865 (1986).
[13]G. Profeta, C. Franchini, N. N. Lathiotakis, A. Floris, A. Sanna, M. A. Marques, M. Luders, S. Massidda, E. K. Gross, and A. Continenza, Physical Review Letters 96 047003 (2006).
[14] D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74, 3241 (1995).
[15] C. T. Black, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76, 688(1996).
[16] J. von Delft, A. D. Zaikin, D. S. Golubev, and W. Tichy, Phys. Rev. Lett. 77, 3189 (1996).
[17] Baopeng Cao, Colleen M. Neal, Anne K. Starace, Yurii N. Ovchinnikov, Vladimir Z. Kresin, and Martin F. Jarrold, Journal of Superconductivity and Novel Magnetism 21, 163 (2008).
[18] J. Bardeen, L. Cooper, and J. R. Schrieffer, Phys. Rev.108, 1175(1957).
[19] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[20] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
[21] Yoichi Kamihara,,, Takumi Watanabe,, Masahiro Hirano,, and, Hideo Hosono,Journal of the American Chemical Society 2008 130 (11), 3296-3297.
[22] Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, and Q. K. Xue, Science 306, 1915 (2004).
[23] I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).
[24] I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. Lett. 92, 207002 (2004).
[25] http://nobelprize.org/
[26] R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962).
[27] P. W. Anderson, J. Phys. Chem. Solids 11, 28 (1959).
[28]何均考,”錫奈米微粒的超導參數與自旋極化”,中央大學碩士論文(2006).
[29]周和穆,”零維奈米鉛粉粒超導耦合強度與粒徑關係探討”,中央大學碩士論文(2003).
第二章:
[1]K. Kimoto, I. Nishida, Japan J. Appl. Phys., 6(9), 1047(1967).
[2]N. Wada, Jpn. J. Appl. Phys. 6, 553 (1967).
[3]Wada, Nobuhiko, Ichikawa, Masaru, Jpn. J. Appl. Phys. 15, 775 (1976).
[4]S. Yatsuya, S. Kasukabe, and R. Uyeda, Jpn. J. Appl. Phys. 12, 1675 (1973).
[5]吳泰伯、許樹恩,X 光繞射原理與材料結構分析,第三版,中國材料科學學會(2004).
[6]王進威,”擬合X光繞射峰形判定奈米微粒粉末的粒徑分佈” 中央大學碩士論文(2006).
[7] C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).
[8]R. Espiau de Lamaestre and H. Bernas, Phys. Rev. B 73, 125317(2006).
[9]Rietveld,H.M.(1969). J. Appl. Crystallogr.,2,65-71.
[10]Allen C. Larson and Robert B. Von Dreele, GSAS: General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, 1998, Report No. LAUR 86-748.
[11] Dinesh Martien,”Introduction to:AC Susceptibility”,Quantum Design.
第三章:
[1]Soshin Chikazumi原著,張煦、李學養合譯,磁性物理學,聯經出版社(1982),第四章.
[2]張立德、牟季美著,奈米材料和奈米結構,滄海書局(2002),p62-p66.
[3] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Phys. Rev. B 69, 174411 (2004).
[4] T. Koide, H. Miyauchi, J. Okamoto, T. Shidara, A. Fujimori, H. Fukutani, K. Amemiya, H. Takeshita, S. Yuasa, T. Katayama, and Y. Suzuki, Phys. Rev. Lett. 87, 257201 (2001).
[5] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
[6]吳勝允、李文献,物理雙月刊 二十八卷五期(2006).
[7] J. G. E. Harris, J. E. Grimaldi, D. D. Awschalom, A. Chiolero, and D. Loss, Phys. Rev. B 60, 3453 (1999).
[8] S. Mørup and B. R. Hansen, Phys. Rev. B 72, 024418 (2005).
[9] W.-H. Li, C.-W. Wang, C.-Y. Li, C. K. Hsu, C. C. Yang, and C.-M. Wu, Phys. Rev. B 77, 094508 (2008).
[10] S. Mørup and C. Frandsen, Phys. Rev. Lett. 92, 217201 (2004).
第四章:
[1]張玉恆、李玉芝著,超導物理,P40~P43.
[2]B. Mühlschlegel, D. J. Scalapino, and R. Denton, Phys. Rev. B 6, 1767 (1972).
[3]R. A. Buhrman and W. P. Halperin, Phys. Rev. Lett. 30, 692 (1973).
[4] V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 20, 1064(1950).
[5]S. Bose, P. Raychaudhuri, R. Banerjee, P. Vasa, and P. Ayyub, Phys. Rev. Lett. 95, 147003 (2005).
[6]J. P. Issi, Aust. J. Phys. 32, 585 (1979).
[7]Haussermann, U.; Soderberg, K.; Norrestam, R. J. Am. Chem. Soc.124,15359(2002).
[8]M. L. Tian, J. G. Wang, N. Kumar, T. H. Han, Y. Kobayashi, T. E.Mallouk, and M. H. W. Chan, Nano Lett. 6, 2773 (2006).
[9]F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284,1335(1999).
[10]R. König, A. Schindler, and T. Herrmannsdörfer, Phys. Rev. Lett. 82, 4528 (1999).
[11]A. Schindler, R. König, T. Herrmannsdörfer, H. F. Braun, G. Eska, D. Günther, M. Meissner, M. Mertig, R. Wahl and W. Pompe, Europhys. Lett. 58, 885 (2002).
[12]A. P. Tsai, N. Chandrasekhar, and K. Chattopadhyay, Appl. Phys. Lett. 75, 1527 (1999).
[13]W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B 68, 184507 (2003).
[14]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
[15]X. F. Cui, M. Zhao, and Q. Jiang, Thin Solid Films 472, 328 (2005).
[16]M. Strongin, O. F. Kammerer, J. E. Crow, R. D. Parks, D. H. Douglass, Jr., and M. A. Jensen, Phys. Rev. Letters 21, 1320 (1968).
[17]J. M. Dickey and A. Paskin, Phys. Rev. Letters 21, 1441 (1968).
[18]J. M. Dickey and A. Paskin, Phys. Rev. B 1, 851 (1970).
[19] Guy Deutscher,Superconductivity:Conventional and Unconventional,Springer-Verlag,Ch.7 (2007).
[20] Michael Tinkhan,Introduction to superconductivity:Second Edition, McGraw-Hill Book Company (2004).
[21] D. Pines, Phys. Rev. 109, 280 (1958).
[22] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[23]P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
[24]S. Matsuo, H. Sugiura, and S. Noguchi, J. Low Temp. Phys. 15, 481 (1974).
[25]J. P. Hurault, K. Maki, and M. T. Beal-Monod, Phys. Rev. B 3, 762 (1971).
[26] S. Reich, G. Leitus, R. Popovitz-Biro, and M. Schechter, Phys. Rev. Lett. 91, 147001 (2003).
[27] W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B 68, 184507 (2003).
[28] D.H. Martin, Megnetism in Solids, Iliffe Books Ltd, (1967).
[29] E. Bernardi, A. Lascialfari, and A. Rigamonti,Phys. Rev. B 74, 134509 (2006).
第五章:
[1] 陳志瑋,”調控鎳奈米微粒粉末的磁化強度”,中央大學碩士論文(2006).
[2] J. F. Cochran, D. E. Mapother, and R. E. Mould,Phys.Rev.103,1657(1956).
[3] Reinhard König, Alexander Schindler, Thomas Herrmannsdörfer and Hans F. Braun,Advances in Solid State Physics.40,729(2000).
[4] D. Fay and J. Appel, Phys. Rev. B62, 14 350 (2000).
[5]翁世宇,”微粒間交互作用對奈米錫超導參數之影響 ”,中央大學碩士論文(2007).
[6]張玉恆、李玉芝著,超導物理,第十二章.
指導教授 李文献(Wen-Hsien Li) 審核日期 2009-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明