博碩士論文 962202031 詳細資訊


姓名 王哲倫(Zhe-lun Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 In/Ni 奈米複合材料的電子傳輸與超導性
(Superconductivity and electron transport properties of In/Ni nanocomposites)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討超導/磁性系統。透過磁化率、磁化強度與電阻率實
驗,分別使用了粒徑較小(超導抗磁性較弱)的In_A 及粒徑較大(超導抗磁性較強)的In_B 混入相同的Ni 鐵磁性微粒,依序討論兩類共五組In/Ni 奈米複合材料之磁性與超導性質。
鎳奈米顆粒因其磁性或顆粒間鄰近效應破壞系統超導性。此外,系統電子傳輸展現特殊雙分量行為,我們利用自由電子模型及GL 理
論計算樣品Ginzburg-Landau 參數κ,根據二類超導體的指標性參數κ » 1,我們的系統歸類於類二類超導體。粒徑較大與粒徑較小樣品表現出截然不同之物理特性。且超導抗磁對應於磁化率對磁場的曲
線,僅展現在粒徑較大樣品中,反之,粒徑較小樣品則否。
小顆粒複合材料中,低於超導溫度後展現出超導性與跳躍式電子
傳輸共存。高於超導溫度則為自旋相關磁阻,低於超導溫度由於古柏對之磁擾動使磁阻曲線有一峰值,高磁場區域為負磁阻行為。
大顆粒複合材料中,In50-Ni50 除了超導抗磁相變外,低溫2.5 K
附近磁化率與磁化強度皆存在一個上揚(upturn) 為順磁性居禮
(Curi)T-1 的形式,展現出磁性分量的表徵,說明超導與鐵磁自旋極化共存。且R-T 展現出與超導有關的雙凹入式電阻行為,並認為凹入式電阻行為與自旋極化之磁分量無關。
摘要(英) In this thesis we report on the characteristics of nanocomposite systems that are prepared by mixing superconducting and ferromagnetic materials. The influence of magnetic material on traditional superconductor is discussed through magnetic susceptibility,magnetization, and electron transport measurement. The five set of samples consist of same size of nickel nanoparticles with two different sizes of indium nanoparticles.
Tc is reduced by interparticle proximity effect from neighboring magnetic particles. Furthermore, the electron transport reveals unusual two component behavior. Free electron model and Ginzburg-Landau theory are used to calculate GL parameter κ. Then according to the criterion of typeⅡ superconductor, the value of κ is greater than 1. From both the calculated κ value and two component behaviors, this system is classified to the typeⅡ-like superconductor. The diamagnetic signals of superconductivity in large particles are stronger than small ones.Interestingly, the small and large nanoparticles have shown entirely different physical properties.
The small particle size sample shows the coexistence of
superconductivity and hopping conduction at low temperature. Spin dependent magnetoresistance (MR) and negative MR at high applied magnetic field regime are observed at normal state and superconducting state respectively.
In50-Ni50 is the sample in large particle size series. It shows diamagnetic superconducting signals under different applied magnetic field at below Tc. At temperature below 2.5K, magnetic susceptibility and magnetization increase with decreasing temperature which signals the existence of spin polarized moment. We attribute these behaviors to the
coexistence of superconductivity and spin polarized moment. Moreover,the electron transport data exhibits superconductivity dependent double reentrant behavior and unconcerned with spin polarized magnetic moment.
關鍵字(中) ★ 超導
★ 電子傳輸
★ 奈米顆粒
★ 跳躍式傳輸
★ 自旋極化
★ 自旋相關
★ 雙分量
★ 類二類
關鍵字(英) ★ type Ⅱ like
★ two component
★ electron transport
★ nanoparticles
★ hopping conduction
★ Ferromagnetic spin polarization
★ spin dependent
★ superconductivity
論文目次 摘要...Ⅰ
Abstract ...Ⅱ
致謝...Ⅳ
目錄...Ⅴ
圖目錄...Ⅶ
表目錄...XⅡ
第一章 簡介..1
1-1 奈米顆粒的物理特性...1
1-2 超導奈米複合材料介紹...5
1-3 研究目的...6
參考資料...7
第二章 In/Ni 奈米複合材料備製與分析...8
2-1 奈米顆粒備製方法...8
2-2 粒徑與成分分析...12
2-3 複合奈米樣品製作...26
2-4 電子傳輸與磁性量測...29
參考資料...33
第三章 電子傳輸與超導現象簡介...34
3-1 巨磁阻效應GMR...34
3-2 超導微粒系統之溫度相關電阻種類...36
3-3 跳躍式電子傳輸...38
參考資料...40
第四章 弱超導性In/Ni 奈米複合材料...41
4-1 類二類超導體...41
4-2 超導與跳躍式電子傳輸共存...47
4-3 自旋相關磁阻效應...56
4-4 古柏對的磁擾動現象...64
參考資料...68
第五章 強超導性In/Ni 奈米複合材料...69
5-1 雙凹入式電阻行為...69
5-2 類二類超導體...74
5-3 鐵磁與超導共存現象...81
5-4 超導抗磁現象...85
參考資料...91
第六章 總結...92
參考文獻 第一章
[1] W. H. Li, C. C. Yang, F. C. Tsao, S. Y. Wu, P. J. Huang, M. K. Chung, and Y. D.Yao, Phys. Rev. B. 72, 214516 (2005).
[2] Ph. Buffat and J-P. Borel, Phys. Rev. A13, 2287 (1976).
[3] A. J. Cox et al. Phys. Rev. B49, 12295 (1994).
[4] W. P. Halperin, Rev. Mod. Phys. 58, 533 (1986).
[5] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Phys.Rev. B 69, 174411 (2004).
[6] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K.Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
[7] I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys.79, 469 (2007).
[8] Anderson, P. W., 1959, J. Phys. Chem. Solids 1, 26.
[9] Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957)
[10] Abeles, B., 1977, Phys. Rev. B 15, 2828.
[11] G. Deutscher, Y. Imry, and L. Gunther, Phys. Rev. B 10, 4598 (1974).
[12] R. C. Dynes, J. P. Garno, and J. M. Rowell, Phys. Rev.Lett. 40, 479 (1978).
[13] B. G. Orr, H. M. Jaeger, and A. M. Goldman,Phys. Rev. B 32, 7586 (1985).
[14] Shapira, Y., and G. Deutscher, 1983, Phys. Rev. B 27, 4463.
[15] C. Monton, F. de la Cruz, and J. Guimpel, Physical Review B (Condensed Matter and Materials Physics) 75, 064508 (2007).
[16] M. Lange, M. J. V. Bael, A. V. Silhanek, and V. V.Moshchalkov, Phys. Rev. B72, 052507 (2005).
[17] A. Palau, H. Parvaneh, N. A. Stelmashenko, H.Wang, J. L.Macmanus-Driscoll,and M. G. Blamire, Phys. Rev. Lett.98, 117003 (2007).
第二章
[1] 許樹恩,吳泰伯,X 光繞射原理與材料結構分析,第四刷(2006),中國材料科學學會,p124~125.
[2] 許樹恩,吳泰伯,X 光繞射原理與材料結構分析,第四刷(2006),中國材料科學學會,p425~427.
[3] 汪建民,材料分析,第六刷(2008),中國材料科學學會,第六章.
[4] R. Espiau de Lamaestre and H. Bernas, Phys. Rev. B 73, 125317(2006).
[5] 王進威,擬合X光繞射峰形判定奈米微粒粉末的粒徑分佈,中央大學碩士論文(2006)
[6] 管曉慧,銦-鈷複合奈米材料的電子傳輸與磁阻探討,中央大學碩士論文(2008),p24 圖2.5 .
第三章
[1] 張慶瑞、蘇又新,物理雙月刊卅卷二期,p110~p115 (2008).
[2] 江文中、李尚凡,物理雙月刊卅卷二期,p116~p121 (2008).
[3] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G.Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
[4] Shapira, Y., and G. Deutscher, Phys. Rev. B 27, 4463 (1983).
[5] Jaeger, H. M., D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. B 40,182 (1989).
[6] Liu, Y., D. B. Haviland, B. Nease, and A. M. Goldman,Phys. Rev. B 47, 5931(1993).
[7] N.F.Moot and E.A.DavidaElectronic Processes in non-crystalline Material,second edition,p32~p37.
[8] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
第四章
[1] Ashcroft/Mermin, Solid state physics(Brooks/Cole), p52.
[2] Michael Tinkham, Introduction to Superconductivity(Dover), Second Edition,p118~120.
[3] Abeles, B., P. Sheng, M. Coutts, and Y. Arie, 1975, Adv. Phys.24, 407.
[4] Shklovskii, B. I., and A. L. Efros, 1988, Electronic Properties of Doped Semiconductors _Springer-Verlag, Berlin (1984).
[5] Ashcroft/Mermin, Solid state physics(Brooks/Cole),p559.
[6] 許均銓,奈米鉍顆粒間交互作用對自發磁性之影響,中央大學碩士論文(2009).
[7] A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968).
[8] A. Gerber et al., Phys. Rev. Lett. 78, 4277 (1997).
[9] I.S. Beloborodov and K.B. Efetov, Phys. Rev. Lett. 82, 3332 (1999).
[10] I. S. Beloborodov, K. B. Efetov, and A. I. Larkin, Phys. Rev. B 61, 9145 (2000).
[11] L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela (Leningrad) 10, 1104 (1968),[Sov. Phys. Solid State 10, 875 (1968)].
[12] K. Maki, Prog. Theor. Phys. 39, 897 (1968); 40, 193 (1968); R. S. Thompson,Phys. Rev. B 1, 327 (1970).
[13] P. Wasilewski, Earth Planet. Sci. Lett. 20, 67 (1973).
第五章
[1] Liu, Y., D. B. Haviland, B. Nease, and A. M. Goldman, 1993,Phys. Rev. B 47,5931.
[2] W.-H. Li, C.-W. Wang, C.-Y. Li, C. K. Hsu, C. C. Yang, and C.-M. Wu, Phys. Rev.B 77, 094508 (2008).
[3] I. Sternfeld, V. Shelukhin, A. Tsukernik, M. Karpovski,A. Gerber, and A. Palevski,Phys. Rev. B 71, 064515 (2005).
[4] C. J. Kircher, Phys. Rev. 168, 437 (1968).
[5] O. Bourgeois, A. Frydman, and R. C. Dynes, Phys. Rev. B 68,092509 (2003).
[6] P. G. De Gennes, Rev. Mod. Phys. 36, 225 (1964).
[7] W. Silvert, Phys. Rev. B 12, 4870 (1975).
[8] A. Hernando, P. Crespo, and M. A. García, Phys. Rev. Lett. 96,057206 (2006).
[9] V. Sahni and K.-P. Bohnen, Phys. Rev. B 29, 104(1984); 31,7651 (1985).
指導教授 李文献(Wen-Hsien Li) 審核日期 2009-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡