博碩士論文 962203014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.224.214.215
姓名 黃映雪(Ying-xue Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用Heart-cut技術診斷揮發性有機化合物之熱脫附行為
(Applying Heart-cut Techniques to Diagnose Thermal Desorption Profiles of Ambient Volatile Organic Compounds)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今大氣中VOCs的監測方法大多以固態吸附劑做為捕捉媒介,並藉由熱脫附方式將樣品送至氣相層析系統中進行分離及偵測,然而熱脫附行為往往在第一時間左右了層析結果的層析峰形及解析度,提高了VOCs監測方法在定量上的不確定度。而本實驗利用丁式切換器對熱脫附峰進行切片檢查,以診斷影響層析峰形之變因,瞭解熱脫附行為,並拓廣丁式切換器的應用層面。Heart-cut系統架構以丁式切換器為核心,預管柱選用無滯留能力的毛細管空管,分析管柱則為DB-1,藉由丁式切換器的切換,可控制預管柱沖堤出之樣品流往空管或DB-1,藉以達到樣品切片之目的。
VOCs未經任何分離作用即到達偵測器所測得之峰形,在此稱之為熱脫附峰,此亦代表著物種熱脫附行為的輪廓,實驗中發現VOCs的熱脫附峰呈現拖尾情形,初步推測此乃系統間的無益體積所造成,經由該切片技術對無益體積所增長之樣品帶進行分流後,樣品拖尾現象獲得大幅改善,然而卻亦意外發現被分流丟棄之部分似乎大多為重碳成分,隨後亦進一步針對VOCs的熱脫附峰進行精細切片診斷。診斷結果發現熱脫附峰各區段之物種呈現非均勻分佈趨勢,且其後端拖尾部份主要為重碳物種所貢獻。根據熱脫附峰之診斷報告,吾人認為物種分佈之非均性可能為物種傳送速率之差異所致,為驗證此闡釋,在此亦進一步針對樣品傳輸管之各項參數進行一連串最佳化探討。
最佳化之傳輸管條件為79.5 cm x 0.32 mm i.d.之毛細管空管,且必須另以加熱帶及溫度讀取裝置將溫度控制在200 °C左右。最佳化系統之RSD值可控制在0.66%〜2.00%;線性關係皆在0.999之上;而對稱因子與解析度表現相較於傳統系統,則分別有0.30%〜16.85%及10%左右的提升。本實驗使用切片技術成功達到診斷熱脫附行為之目的,並由實驗結果獲得之資訊進一步對系統進行改良,最終之最佳化系統亦皆有優於傳統系統之層析表現。
摘要(英) Using sorbent traps coupled with GC techniques has become the most common method for ambient VOC measurements. However, the peak shape and resolution is mainly affected by the process of thermal desorption of the sorbent trap. This might induce the uncertainties in quantification. In this study, a Deans switch heart-cut system is used to study the phenomenon. It is equipped with a deactivated capillary column, and a DB-1 column as both the precolumn and the analytical column. By controlling the Deans switch, the analytes can be routed to either the the DB-1 or the deactivated column.
In this study, the desorption of VOCs from the trap without being separated by any column is termed a thermal desorption (TD) peak. The TD peak can represent the profile during thermal desorption of a sorbent trap. Pronounced peak-tailing of the TD peak was found, and was possible arising from the dead volumes in the analytical system. The TD peak was sliced into six portions to be separated by the DB-1 column to the diagnose any discrimination with the VOC composition during the TD process. As an important and related issue of the TD process, the directions of thermal desorption of a sorbent trap were also investigated.
Surface condition of a transfer line after TD was also found to determine to some degree the transfer rates of different species, particularly the heavier compounds. Hence, different types and conditions of the transfer line are also discussed in our research. The optimum transfer line was found to be the deactivated capillary column (length = 79.5 cm, 0.32 mm ID) heated at approximately 200°C. The RSDs are within 0.66-2.00% with R2 no less than 0.999.
A novel application of the Deans switch has been developed by applying the heart-cut technique to diagnose the TD process. This peak-slicing technique not only can exam the TD profile of a sorbent trap, it also further broadens the application aspects of the Deans switch.
關鍵字(中) ★ 熱脫附行為
★ 揮發性有機化合物
★ 丁式切換器
關鍵字(英) ★ Heart-cut
★ Deans switch
★ Volatile Organic Compounds
★ Thermal desorption
論文目次 中文摘要 .............................................................................................. I
英文摘要 ............................................................................................ III
圖目錄 ............................................................................................... IX
表目錄 ..............................................................................................XIII
第一章 前言 ........................................................................................ 1
1-1 揮發性有機化合物(VOCs) ....................................................... 2
1-1.1 VOCs 之來源 ................................................................. 5
1-1.2 VOCs 對健康之危害 ...................................................... 8
1-1.3 VOCs 造成光煙霧之影響 ............................................... 9
1-2 揮發性有機化合物之分析方法 ............................................... 14
1-3 氣相層析技術沿革與發展 ...................................................... 17
1-4 Heart-cut 技術 ........................................................................ 23
1-4.1 原理簡介 ..................................................................... 23
1-4.2 切換裝置 ..................................................................... 25
1-4.3 應用領域 ..................................................................... 31
1-5 影響峰形變異因子 ................................................................. 32
1-5.1 額外管柱效應 .............................................................. 33
1-5.2 熱脫附行為 ................................................................. 37
1-5.3 拖尾程度之量化因子 ................................................... 41
VII
1-6 研究目的 ............................................................................... 44
第二章 Heart-cut 分析技術................................................................ 46
2-1 樣品前濃縮系統 ..................................................................... 46
2-1.1 氣動閥及管路配置 ....................................................... 46
2-1.2 吸附管製備 ................................................................. 47
2-1.3 溫度控制器 ................................................................. 52
2-1.4 自動控制介面 .............................................................. 52
2-2 前濃縮系統運作機制 ............................................................. 54
2-3 層析系統架構 ........................................................................ 57
2-4 實驗標準品 ............................................................................ 60
第三章 利用Heart-cut 技術診斷熱脫附行為 ...................................... 62
3-1 無益體積對層析峰形之影響 ................................................... 63
3-2 診斷先天熱脫附特性 ............................................................. 69
3-2.1 正向脫附 ..................................................................... 71
3-2.2 逆向脫附 ..................................................................... 78
3-3 正逆向脫附行為之小結 .......................................................... 84
第四章 脫附傳送行為 ........................................................................ 85
4-1 傳輸管溫度 ............................................................................ 85
4-2 傳輸管材質 ............................................................................ 95
4-3 傳輸管管徑 .......................................................................... 101
VIII
4-4 傳輸管長度 .......................................................................... 107
4-5 最佳化系統驗證 ................................................................... 112
4-5.1 再現性試驗 ............................................................... 113
4-5.2 檢量線試驗 ............................................................... 113
4-5.3 對稱因子與解析度試驗 .............................................. 114
第五章 結論與未來展望 .................................................................. 119
5-1 結論 .................................................................................... 119
5-2 未來展望 ............................................................................. 120
第六章 參考文獻 ............................................................................. 122
附錄一 ............................................................................................. 127
參考文獻 1. 王介亨; 王家麟, 以Heart-cut 技術配合單偵檢器發展氣相層析"剪裁"技術. 國立中央大學化學研究所碩士論文 民國九十三年六月.
2. Seinfeld, J. H.; Pandis, S. N., ATMOSPHERIC CHEMISTRY AND PHYSICS. John Wiley & Sons, Inc.: 1998.
3. Placet, M.; Battye, R. E.; Fehsenfeld, F. C.; Bassett, G. W., Emissions Involved in Acidic Deposition Processes.
State-of-Science/Technology Report 1 1990.
4. Sawyer, R. F.; Harley, R. A.; Cadle, S. H.; Norbeck, J. M.; Slott, R.;Bravo, H. A., Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ. 2000, 34, 2161-2181.
5. Placet, M.; Mann, C. O.; Gilbert, R. O.; Niefer, M. J., Emissions of ozone precursors from stationary sources: a critical review. Atmos. Environ. 2000, 34, 2183-2204.
6. Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063-2101.
7. Yassaa, N.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P., Isomeric analysis of BTEXs in the atmosphere using beta-cyclodextrin capillary chromatography coupled with thermal desorption and mass spectrometry. Chemosphere 2006, 63, 502-508.
8. Middleton, P., Source of air pollutants, in Composition, Chemistry, and Climate of the Atmosphere. Van Nostrand Reinhold: New York,1995; p 88-119.
9. Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmerman, P., A Global-Model of Natural Volatile Organic-Compound Emissions. J. Geophys. Res. [Atmos.] 1995, 100, 8873-8892.123
10. 新竹縣環境保護局, 新竹工業園區空氣品質改善規劃書. 1999.
11. David, D. B., Air Toxics:The Problem. EPA Journal 1991, 172.
12. 香氱環境保護署,
http://www.epd.gov.hk/epd/tc_chi/environmentinhk/air/prob_solutions/vocs_smog.html#point_1
13. 行政院環境保護署, 空氣品質監測報告. 96 年年報.
14. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L.G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C., Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 2001, 292, 719-723.
15. USEPA, Compendium Method TO-17: Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air Using Active Sampling onto Sorbent Tubes.
16. 行政院環保署環境檢驗所, 排放管道中揮發性有機化合物檢測方法-揮發性有機化合物採樣組裝卅氣相層析質譜儀法. NIEA A721.70B 1997.
17. 行政院環保署環境檢驗所, 空氣中氣態有機溶劑檢驗方法—以活性碳吸附之氣相層析∕火焰離子化偵測法. NIEA A710.10T 1992.
18. USEPA, Compendium Method TO-15: Determination of volatile organic compounds(VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography / mass spectrometry.
19. 行政院環保署環境檢驗所, 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒卅氣相層析質譜儀法. NIEA A715.13B 2008. 124
20. Simo, R.; Grimalt, J. O.; Albaiges, J., Field sampling and analysis of volatile reduced sulphur compounds in air, water and wet sediments by cryogenic trapping and gas chromatography. J. Chromatogr. A 1993, 655, 301-307.
21. Harper, M., Sorbent trapping of volatile organic compounds from air. J. Chromatogr. A 2000, 885, 129-151.
22. USEPA, Compendium Method TO-1: Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air Using Tenax-TA Adsorption and Gas Chromatography/Mass Spectrometry(GC/MS).
23. USEPA, Compendium Method TO-2: Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air by Carbon Molecular Sieve Adsorption and Gas Chromatography/Mass Spectrometry(GC/MS).
24. 行政院環保署環境檢驗所, 空氣中揮發性含鹵素碳氫化合物檢驗方法-以Tenax-TA 吸附劑採樣之氣相層析法. NIEA A714.10T 1994.
25. Tanner, D.; Helmig, D.; Hueber, J.; Goldan, P., Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere. J. Chromatogr. A 2006, 1111, 76-88.
26. 行政院環保署環境檢驗所, 空氣中有機光化前驅物自動連續監測方法- 氣相層析法. NIEA A505.11B 2006.
27. Dunn, M.; Shellie, R.; Morrison, P.; Marriott, P., Rapid sequential heart-cut multidimensional gas chromatographic analysis. J. Chromatogr. A 2004, 1056, 163-169.
28. Bertsch, M., Two-Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications - Part 1: Fundamentals, Conventional Two-Dimensional Gas Chromatography, Selected Applications. J. High. Resolut. Chromatogr. 1999, 22, 647-665.125
29. Bertsch, M., Methods in high resolution gas chromatography. Two-dimensional techniques. J. High. Resolut. Chromatogr. 1978, 1, 187-194.
30. Deans, D. R., A new technique for heart cutting in gas
chromatography. Chromatographia 1968, 1, 18-22.
31. Luigi Mondello, A. C. L., Keith D. Bartle, A. C. Lewis, Multidimensional High Resolution Gas Chromatography. In Multidimensional Chromatography, 2002; pp 47-75.
32. Edward, A.P.; Vanessa R.K., Multidimensional GC Analysis of Complex Samples. Global Analytical Solutions, Gerstel 2005.
33. Latella, A.; Stani, G.; Cobelli, L.; Duane, M.; Junninen, H.; Astorga, C.; Larsen, B. R., Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. J. Chromatogr. A 2005, 1071, 29-39.
34. http://www.epa.gov/airprogm/oar/oaqps/pams.
35. Ma, Y.; Hays, M. D., Thermal extraction-two dimensional gas chromatography-mass spectrometry with heart-cutting for nitrogen heterocyclics in biomass burning aerosols. J. Chromatogr. A 2008, 1200, 228-234.
36. Bhushan, A., SYSTEM OPTIMIZATION FOR REALIZING A
MINIATURIZED GAS CHROMATOGRAPH SENSOR FOR RAPID
CHEMICAL ANALYSIS 2006.
37. Ryan, M. M.; John, W. D., Extracolumn Effects. LCGC
Troubleshooting 2004, 7, 1050.
38. Sanchez, J. M.; Sacks, R. D., On-Line Multibed Sorption Trap and Injector for the GC Analysis of Organic Vapors in Large-Volume Air Samples. Anal. Chem. 2003, 75, 978-985.126
39. Chen, T.-Y.; Li, M.-J.; Wang, J.-L., Sub-second thermal desorption of a micro-sorbent trap for the analysis of ambient volatile organic compounds. J. Chromatogr. A 2002, 976, 39-45.
40. Dolan, J. W., Why do peaks tail? Lc Gc Europe 2003, 16, 610.
41. How is the Calculation of Peak Symmetry factor done?
http://www.chem.agilent.com/enUS/Support/FAQs/DS/Software/Cerity-Pharmaceutical/Pages/KB004398.aspx
42. 吳東明, 中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較. 國立中央大學化學研究所碩士論文 民國九十四年六月.
指導教授 王家麟(Jia-lin Wang) 審核日期 2009-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明