以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:52 、訪客IP:3.239.76.211
姓名 陳宣尹(Hsuan-Yin Chen) 查詢紙本館藏 畢業系所 化學學系 論文名稱 含有碳烯化合物之鈀金屬異相觸媒催化碳碳鍵生成反應之研究 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 鈀觸媒應用於Suzuki反應時,金屬的電子密度愈大愈有利於催化反應中的氧化加成作用進行。而碳烯化合物(carbene)是一種具有強供電子能力的配位基(ligand),因此我們在觸媒(PA2UF40)中直接加入carbene,希望藉以提升鈀金屬的電子密度,進而在催化鈴木反應上,我們觀察出其反應性已成功地產生了活化的現象。隨後,我們又合成出不同鈀金屬顆粒大小的觸媒(PA2US20、PA2UF20、PA2US58),在交叉比對的實驗中,可以發現影響反應的因素除了金屬的電子密度之外,決定活性點多寡的表面積大小亦是需要考量的重點之一。而在觸媒的鑑定方面,我們利用到原位-紅外線光譜儀針對金屬的電子密度特性作為分析。
摘要(英) In Palladium-catalyzed Suzuki coupling, the higher electron density of the catalytic metal possesses the much higher active reaction will undergo. Since carbene is a well-known electron-donating ligand, herein, we describe an innovation of that versatile ligand directly loaded onto the heterogeneous Palladium catalyst which we expected to increase the electron property of the metal. Afterward, the novel catalysts turned out to exhibit a certain promotion while testing the coupling reaction of the 4-bromotoluene with phenylboronic acid. Moreover, a series of different particle size of the heterogeneous catalytic metals were also synthesized. In our crossover experiments, we find that not only the electron density of the metal dominates the reaction proceeding but the amount of the active sites affects the reactive efficiency which is determined by the surface area of the metal. Furthermore, the characterization of the catalysts was confirmed by in-situ IR analysis.
關鍵字(中) ★ 碳碳鍵結
★ 鈴木反應
★ 異相觸媒
★ 鈀金屬關鍵字(英) ★ C-C coupling
★ palladium
★ heterogeneous
★ Suzuki reaction論文目次 摘要......................................................i
Abstract.................................................ii
謝誌....................................................iii
目錄.....................................................iv
圖目錄...................................................ix
表目錄...................................................xi
式目錄..................................................xii
第一章 緒論...............................................1
1-1碳碳鍵結之應用.........................................1
1-2 Suzuki反應的崛起......................................1
1-3 Suzuki反應之反應機構..................................2
1-4 Suzuki反應之發展......................................4
1-5 均相與異相觸媒........................................6
1-6 研究方向..............................................9
第二章 實驗部份..........................................10
2-1 催化劑製備部分.......................................10
2-1-1 藥品...............................................10
2-1-2 儀器...............................................10
2-1-3實驗步驟............................................10
2-1-3-1 鈀金屬異相觸媒 (含浸與鍛燒、還原)................10
2-1-3-1-1 催化劑PA2UF40..................................10
2-1-3-1-2 催化劑PA2UF20..................................11
2-1-3-1-3 催化劑PA2US20..................................11
2-1-3-1-4 催化劑PA2US58..................................12
2-1-3-2 碳烯-鈀金屬異相觸媒..............................12
2-1-3-2-1 催化劑carbene=PA2UF40 (cb=PA2UF40).............12
2-1-3-2-1-1 催化劑cb=PA2UF40(0.1:1)......................12
2-1-3-2-1-2 催化劑cb=PA2UF40(0.25:1).....................13
2-1-3-2-1-3 催化劑cb=PA2UF40(0.5:1)......................13
2-1-3-2-1-4 催化劑cb=PA2UF40(0.75:1).....................13
2-1-3-2-1-5 催化劑cb=PA2UF40(1:1)........................13
2-1-3-2-2 催化劑carbene=PA2UF20 (cb=PA2UF20).............14
2-1-3-2-2-1 催化劑cb=PA2UF20(0.1:1)......................14
2-1-3-2-2-2 催化劑cb=PA2UF20(0.25:1).....................14
2-1-3-2-2-3 催化劑cb=PA2UF20(0.5:1)......................14
2-1-3-2-2-4 催化劑cb=PA2UF20(0.75:1).....................14
2-1-3-2-2-5 催化劑cb=PA2UF20(1:1)........................15
2-1-3-2-3 催化劑carbene=PA2US20 (cb=PA2US20).............15
2-1-3-2-3-1 催化劑cb=PA2US20(0.1:1)......................15
2-1-3-2-3-2 催化劑cb=PA2US20(0.25:1).....................15
2-1-3-2-3-3 催化劑cb=PA2US20(0.5:1)......................15
2-1-3-2-3-4 催化劑cb=PA2US20(0.75:1).....................16
2-1-3-2-3-5 催化劑cb=PA2US20(1:1)........................16
2-1-3-2-4 催化劑carbene=PA2US58 (cb=PA2US58).............16
2-1-3-2-4-1 催化劑cb=PA2US58(0.1:1)......................16
2-1-3-2-4-2 催化劑cb=PA2US58(0.25:1).....................16
2-1-3-2-4-3 催化劑cb=PA2US58(0.5:1)......................17
2-1-3-2-4-4 催化劑cb=PA2US58(0.75:1).....................17
2-1-3-2-4-5 催化劑cb=PA2US58(1:1)........................17
2-1-3-3 催化劑之特性鑑定.................................17
2-1-3-3-1原位-紅外線光譜儀實驗...........................17
2-1-3-3-1-1 催化劑PA2UF40................................17
2-1-3-3-1-2 催化劑PA2UF20................................18
2-1-3-3-1-3催化劑PA2US20.................................18
2-1-3-3-1-4 催化劑PA2US58................................18
2-1-3-3-1-5 催化劑含carbene與不含carbene系列的比較部份...19
2-1-3-3-2紫外光/可見光光度計實驗.........................19
2-1-3-3-3 X光粉末繞射儀..................................19
2-2 Suzuki反應部份.......................................21
2-2-1 藥品...............................................21
2-2-2 儀器...............................................21
2-2-3 實驗步驟...........................................21
2-2-4 Suzuki反應之產物鑑定...............................22
2-2-4-1 核磁共振儀實驗...................................22
2-2-4-2 氣相層析儀實驗...................................22
第三章 結果與討論........................................24
3-1 催化劑部份...........................................24
3-1-1 原位-紅外線光譜之應用..............................24
3-1-2 催化劑PA2UF40系列之原位-紅外線光譜圖分析...........26
3-1-3 元素分析儀(Elemental Analysis)之分析...............29
3-1-4 紫外光/可見光光度計(UV-visible)圖譜之分析..........30
3-1-5 X光粉末繞射儀圖譜之分析與應用......................31
3-2 Suzuki反應部份.......................................35
3-3觸媒中不同的鈀金屬顆粒大小應用於Suzuki反應之比較......38
3-3-1 觸媒之合成目的.....................................38
3-3-2 不同觸媒之原位-紅外線光譜圖分析....................38
3-3-3 EXAFS之偵測原理、應用與分析........................41
3-3-3-1 EXAFS之偵測原理與應用............................41
3-3-3-2 EXAFS之分析......................................43
3-3-4 催化劑PA2US58系列之原位-紅外線光譜圖分析...........44
3-3-5 不同觸媒應用於Suzuki反應之結果.....................46
第四章 結論..............................................50
參考資料.................................................51
附錄.....................................................55
參考文獻 (1) (a) Ye, Y. Q.; Koshino, H.; Onose, J.-I.; Yoshikawa, K.; Abe, N.; Takahashi, S. Org. Lett. 2009, 11, 5074-5077.
(b) Trost, B. M.; O’Boyle, B. M.; Hund, D. J. Am. Chem. Soc. 2009, 131, 15061-15074
(c) Ghosh, A. K.; Li J. Org. Lett. 2009, 11, 4164-4165.
(2) (a) Kim, K.-S.; Lee, H. S.; Jeon, Y.-M.; Kim, J.-W.; Lee, C.-W.; Gong, M-S. Dyes and Pigments 2009, 81, 174-179.
(b) Ying, L.; Zou, J.; Yang, W.; Zhang, A.; Wu, Z.; Zhao, W.; Cao, Y. Dyes and Pigments 2009, 82, 251-257.
(c) Sun, M.; Lan, L.; Wang, L.; Peng, J.; Cao, Y. Macromol. Chem. Phys. 2008, 209, 2504-2509
(3) Heck, R. F.; Nolley, Jr., J. P. J. Org. Chem. 1972, 37, 2320-2322.
(4) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 11, 636-3638.
(5) King, A. O.; Okukado, N.; Negishi, E-I Chem. Comm. 1977, 683-684.
(6) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467-4470.
(7) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437-3440.
(8) (a) Suzuki, A. Pure & Appl. Chem. 1985, 12, 1749-1758.
(b) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972-980.
(c) Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168.
(9) (a) Kochi, J. K.; Organometallic Mechanism and Catalysis; Academic Press Inc, New York, 1978.
(b) Heck, R. F. Palladium Reagents in Organic Syntheses; Academic Press, New York, 1985.
(c) Hartley, F. R.; Patai, S. The Chemistry of Metal-Carbon Bond; John Wiley & Sons, Inc., New York, 1985; 3.
(10) Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985-6986.
(11) Zask, A.; Helquist, P. J. Org. Chem. 1978, 43, 1619-1620.
(12) Davidson, J. M.; Triggs, C. J. Chem. Soc., A 1968, 1324-1330.
(13) Dieck, H. A.; Heck, R. F. J. Org. Chem. 1975, 40, 1083-1090.
(14) Baba, S.; Negishi, E.-I. J. Am. Chem. Soc. 1976, 98, 6729-6731.
(15) (a) Onak, T.; Organoborane Chemistry; Academic Press, New York, 1975.
(b) Mikhlailov, B. M.; Bubnov, Yu. N. Organoboron Compounds in Organic Synthesis; Harwood Academic Pub., Amsterdam, 1983.
(c) Pelter, A.; Smith, K.; Brown, H. C. Boran Reagents; Academic Press, New York, 1988.
(16) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
(b) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314-321.
(17) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176-4211.
(18) (a) Bei, X.; Turner, H. W.; Weinberg, W. H. J. Org. Chem. 1999, 64, 6797-6803.
(b) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem. Int. Ed. 2000, 39, 4153-4155.
(c) Andreu, M. G.; Zapf, A.; Beller, M. Chem. Comm. 2000, 2475-2476.
(d) Bedford, R. B.; Cazin, C. S. J. Chem. Comm. 2001, 1540-1541.
(e) Pickett, T. E.; Richards, C. J. Tetrahedron Lett. 2001, 42, 3767-3769.
(f) Liu, S.-Y.; CHoi, M. J.; Fu, G. C. Chem. Comm. 2001, 2408-2409.
(g) Clark, M. L.; Cole-Hamilton, D. J.; Woollins, J. D. J. Chem. Soc. Dalton Trans. 2001, 2721-2723.
(h) Li, G. Y. Angew. Chem. Int. Ed. 2001, 40, 1513-1516.
(i) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998, 557, 93-96.
(19) (a) Grushin, V. V.; Alper, H. in Activation of Unreactive Bonds and Organic Synthesis; Springer, Berlin, 1999, 193-226.
(b) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047-1062.
(20) Cardenas, D. J. Angew. Chem. Int. Ed. 2003, 42, 384-387.
(21) Farina, V. Adv. Synth. Catal. 2004, 346, 1553-1582.
(22) Herrmann, W. A.; Brossmer, C.; Ofele, K.; Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem. Int. Ed. 1995, 34, 1844-1848.
(23) (a) Bedford, R. B. Chem. Comm. 2003, 1787-1796.
(b) Dupont, J.; Pfeffer, M.; Spencer, J. Eur. J. Inorg. Chem. 2001, 1917-1927.
(24) Herrmann, W. A.; Elison, M.; Fischer, J.; Kocker, C.; Artus, G. R. J. Angew. Chem. Int. Ed. 1995, 34, 2371-2374.
(25) (a) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69-82.
(b) Viciu, M. S.; Kissling, R. M.; Stevens, E. D.; Nolan, S. P. Org. Lett. 2002, 4, 2229-2231.
(c) Xu, Q.; Duan, W.-L.; Lei, Z.-Y.; Zhu, Z.-B.; Shi, M. Tetrahedron 2005, 61, 11225-11229.
(d) O’Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Chem. Eur. J. 2006, 12, 4743-4748.
(26) (a) Kim, J.-H.; Jun, B.-H.; Byun, J.-W.; Lee, Y.-S. Tetrahedron Lett. 2004, 45, 5827-5831.
(b) Byun, J.-W.; Lee, Y.-S. Tetrahedron Lett. 2004, 45, 1837-1840.
(c) Kim, J.-H.; Kim, J.-W.; Shokouhimehr, M.; Lee, Y.-S. J. Org. Chem. 2005, 70, 6714-6720.
(d) Kim, J.-W.; Kim, J.-H.; Lee, D.-H.; Lee, Y.-S. Tetrahedron Lett. 2006, 47, 4745-4748.
(e) Lee, D.-H.; Kim,J.-H.; Jun, B.-H.; Kang, H.; Park, J.; Lee, Y.-S. Org. Lett. 2008, 10, 1609-1612.
(27) (a) Tandukar, S.; Sen, A. J. Mol. Cat. A: Chem. 2007, 268, 112-119.
(b) Polshettiwar, V.; Varma, R. S. Tetrahedron 2008, 64, 4637-4643.
(28) Su, W.-B.; Tang, M.-T.; Chang, J.-R. Ind. Eng. Chem. Res. 2005, 44, 1677-1687.
(29) Kantchev, E. A. B.; Ying, J. Y. Organometallics 2009, 28, 289-299.
(30) Gniewek, A.; Ziolkowski, J. J.; Trzeciak, A. M.; Zawadzki, M.; Grabowska, H.; Wrzyszcz, J. J. Catal. 2008, 254, 121-130.
(31) Douglas, B.; McDaniel, D.; Alexander, J. Concepts and Models of Inorganic Chemistry; John Wiley & Sons, Inc., New York, 1994.
(32) (a) Ichikuni, N.; Iwasawa, Y. Catal. Lett. 1993, 20, 87-95.
(b) Mason, M. G.; Gerenser, L. J.; Lee, S.-T. Phys. Rev. Lett. 1977, 39, 288-291.
(33) Bianconi, A.; Koningsberger, D. C.; Prins, R. X-ray Absorption: Principle, Applications, Techniques of EXAFS, SEXAFS and XANES; John Wiley & Sons, New York, 1988.
指導教授 李光華、徐新光
(Kwang-Hwa Lii、Shin-Guang Shyu)審核日期 2010-1-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare