博碩士論文 962203035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.90.204.40
姓名 黃忠正(Chung-Cheng Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 掃描式電子穿隧顯微鏡對乙基取代苯胺分子在金(111)電 極上的吸附及聚合研究
(Electropolymerization of ethylaniline molecular on Au(111) probed by in situ scanning tunneling microscopy )
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積
★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程
★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構
★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究★ 半導體碘化鉛薄膜在單結晶銠電極上的研究
★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響
★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構
★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究★ 掃描式電子穿隧顯微鏡研究甲醇、甲醛、甲酸、一氧化碳分子和鉛原子在鉑(111)和鉑(100)上的吸附結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
首先利用循環伏安法(cyclic voltammetry,CV)及掃描式電子穿隧顯微鏡(scanning tunneling microscopy,STM)來探討單晶金(111)電極上,鄰、間、對-乙基苯胺分子的吸附層結構。C V結果顯示在30 mM濃度下,這三個分子都導致三對特徵峰,由於特徵峰所在的電位反映分子與電極的作用力強弱,由此得知鄰、對-乙基苯胺分子較間-乙基苯胺分子吸附力強,此一結果反映出位於鄰及對位的乙基可增加苯胺官能機上的電子密度,因而使兩者有較強的吸附力。
由STM觀察其吸附結構隨著電位往正移動覆蓋度增加,其中在聚合前的結構對於聚合反應尤為重要。由CV及STM結果皆看到對-乙基苯胺並不會聚合,而是生成水解產物,間接應證要以頭對尾方是才利於聚合;在聚合電位之前的鄰-乙基苯胺是(4√3 × 4√3)聚集結構,聚合以彎曲散亂狀沉積在金(111)上;間-乙基苯胺則是(4 × 2√3),沿√3方向直線沉積在金(111)上。在XPS及NEXAFS的結果:聚間-乙基苯胺的氮/硫比為2/1、質子化的氮/未質子化的氮比為1/1,得知所得到的聚間-乙基苯胺為鹽式中間態,苯環與金表面平均傾角約47度。
第二部分探討乙基苯胺與苯胺混合狀況下,其吸附結構及聚合方式,在苯胺與鄰-乙基苯胺各30mM混合的情況下,在電位0.6V時,由STM觀察到共吸附結構(3√3 × √43)、(3√3 × √57)、和(3√7 × √21),往正電位到0.8V之後便轉為苯胺的(3 × 2√3)結構,對應CV的特徵峰,其變化來自於苯胺的置換,聚合的部分也和苯胺相同,沿載體密排方向直線成長;在苯胺與間-乙基苯胺各30mM混合的情況下,從 0.8 V之後其結構均為(4 × 2√3),聚合的部分類似間-乙基苯胺,沿√3方向直線成長。
摘要(英) Abstract
Cyclic voltammetry (CV) and scanning tunneling microscopy (STM) were used to examine the adsorption of o-, m-, and p-ethylaniline on single crystal Au(111) electrode in sulfuric acid. Each molecule resulted in three pairs of peaks in the CV profiles obtained in 0.5 M sulfuric acid containing 30 mM o-, m-, and p-ethylaniline, respectively. The features found at the most negative potentials were associated with the adsorption-desorption of these molecules. These peaks observed with o- and p-ethylaniline appeared at potentials more negative than that of m-ethylaniline, suggesting that the former were more strongly bonded to the Au(111) electrode, mostly likely via the amino groups.This is consistent with the fact that ethyl substituents on the benzene are electron-donating groups, which increase the electronic density at the amine group of these molecules.
Molecular resolution STM images were acquired to reveal the adlayer structures of these molecules on the Au(111) electrode. Generally, more and more ethylaniline molecules became adsorbed with more positive potential. Those structures observed at onset potentials of oxidation (~0.95 V) were most relevant to the polymerization of these molecules. In situ STM imaging conducted under potential control revealed fast oxidation and polymerization of o- and m-ethylaniline, but not p-ethylaniline. These results supported that these molecules could follow the head-to-tail coupling mechanism established for electrolymerization of anilines. The structures of o- and m-ethylaniline observed at 0.85 V (onset of polymerization) were (4√3 × 4√3) (4 × 2√3),respectively. Raising the potential to >0,95 V, these molecules were oxidized and polymerized with rather different molecular conformations, as revealed by the in situ STM. While o-ethylaniline produced ill-defined polymers, 3-ethylaniline resulted in linear chains of polymers preferentially aligned in the <112> directions of the Au(111) electrode surface. According to XPS and NEXAFS results, the nitrogen/sulfur elemental ratio in the poly3-ethylaniline film is 2/1, and the ratio of protonated /unprotonated nitrogen was 1/1, which is consistent with the expected value for the emeraldine salt of poly3-ethylaniline. The tilt angle defined by the benzene ring and the gold surface is approximately 47?.
I also explore the possibility of forming two-component polymers, such as polyethylaniline-aniline. In situ STM imaging at a fixed potential of 0.6 V showed that aniline and o-ethylaniline could be coadsorbed on Au(111) in 0.5 M sulfuric acid containing 30 mM of aniline and 30 mM o-ethylaniline. The ordered structures were identified as (3√3 × √43), (3√3 × √57), and (3√7 × √21), which were transformed into (3 × 2√3) as the potential was increased to 0.8 V. This structure was previously observed with aniline, suggesting that aniline, being more strongly adsorbed on Au(111) than o-ethylaniline, could displace foreigner admolecules and prevail. The conformation of the produced polymers at E > 0.9 V was the same as that of aniline, where linear chains were produced in the main axis of the Au(111) substrate. In the mixed system of aniline and 3-ethylaniline, in situ STM revealed a (4 × 2√3) structure at 0.8 V. Polymerization at E > 0.9 V resembles that of 3-ethylaniline, where straight chains were found in the <112> directions.
關鍵字(中) ★ 電化學聚合
★ 乙基苯胺
關鍵字(英) ★ ethylaniline
★ electropolymerization
論文目次 目錄
第一章 緒論 ............................................................................................................. 1
1-1 簡介 ............................................................................................................ 1
1-2 共軛高分子的介紹 ..................................................................................... 2
1-3 聚苯胺 ( Polyaniline, PANI)的簡介 ........................................................... 3
1-3-1 電化學方法合成聚苯胺之研究 ....................................................... 4
1-3-2 聚苯胺的聚合機制 .......................................................................... 5
1-4 取代基改變溶解度 ..................................................................................... 6
1-5 陰離子在金電極的特異性吸附.................................................................. 7
1-6 相關文獻探討 ............................................................................................ 7
1-7 X 光光電子光譜(X-ray photoelectron spectrum) ...................................... 8
1-8 近緣X 光吸收細微結構光譜 (Near-Edge X-Ray Absorption Fine Structure
簡稱 NEXAFS ) ................................................................................................ 8
第二章、實驗部分 ................................................................................................... 9
第三章 結果與討論 ................................................................................................ 13
3-1 乙基苯胺吸附在金(111)電極 ................................................................... 13
3-1-1 金(111)電極在 0.1 M 硫酸中之 CV 圖 ..................................... 13
3-1-2 乾淨金(111)電極在 0.1 M 硫酸中之 STM 圖 ........................... 14
3-1-3 金(111)電極於硫酸中吸附苯胺之 CV 圖 .................................... 15
3-1-4 不同濃度硫酸下乙基苯胺在金(111)上的 CV 比較圖 ................ 17
3-1-5 0.5 M 硫酸中苯胺及乙基苯胺在金(111)上電聚合之 CV 圖 ...... 18
3-1-6 30 mM 鄰-乙基苯胺於 0.5 M 硫酸中在金(111)上之 STM 圖像19
3-1-7 30 mM 間-乙基苯胺於 0.5 M 硫酸中在金(111)上之 STM 圖像20
3-1-8 30 mM 對-乙基苯胺於 0.5 M 硫酸中在金(111)上之 STM 圖像20
3-1-9 聚乙基苯胺於 0.5 M 硫酸中在金(111)上之 STM 圖像 ............ 21
VI
3-2 苯胺與乙基苯胺混合吸附在金(111)電極 ............................................... 22
3-2-1 苯胺與鄰-乙基苯胺混合吸附在金(111)之 CV 圖 ...................... 22
3-2-2 苯胺與間-乙基苯胺混合吸附在金(111)之 CV 圖 ...................... 23
3-2-3 苯胺與鄰-乙基苯胺混合在 0.5 M 硫酸中金(111)之 STM 圖 ... 23
3-2-4 苯胺與間-乙基苯胺混合在0.5 M 硫酸中金(111)之 STM 圖 .... 24
3-3 XPS 和NEXAFS 實驗結果 .................................................................... 24
第四章 結論 ........................................................................................................... 25
4-1 乙基苯胺吸附在金(111)電極 .................................................................... 25
4-2 聚鄰-、間-乙基苯胺在不同電位下在金(111)電極的變化 ....................... 26
4-3 苯胺與乙基苯胺混合吸附在金(111)電極 ................................................ 27
第五章 參考文獻 ................................................................................................... 28
參考文獻 第五章 參考文獻
1. Shirakawa, H.; Ikeda, S. Polymer 1971, 2, 231.
2. Shirakawa, H.; Lousi, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J.Chem. Soc.,Chem. Comm. 1977, 578.
3. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Lousi, E.J.; Gau, S. C.; MacDiamid, A. G. Phys. Rev. Lett. 1977, 39,1098.
4. Epstin, A. J.; MacDiarmid, A. G. “ Polyaniline:Solution, Film, and Oxidation State, Proc. Faraday Society, Faraday Trans.”,1989.
5. Diaz, A. F.; Bargon, J. “ Handbook of Conducting Polymers”,T. A. Skotherim. Ed.
6. Wessling, B. Synthetic Metals 1991, 1, 119
7. MacDiarmid, A. G. J. Chem .Soc. Faraday Trans. 1986, 82, 2385.
8. Park, S. M. J. Electrochem. Soc. 1988, 135, 2254.
9. Park, S. M. J. Electrochem. Soc. 1988, 135, 2497.
10. Okamoto, H. Synthetic Metals. 1998, 96, 7.
11. David, M.M.; Ralph, N. A.; Argersinger; W.J. J. Am. Chem. Soc. 1962, 84, 3618.
12. Jeff, B.; Ralph, N.A. J. Am. Chem. Soc. 1968, 90, 6596.
13. Yen, W. ; Focke, W. W. ; Wnek, G. E. J. Phys. Chem. 1989, 93, 495-499
14. Leclerc, M.; Guay, J. ; Dao, Lệ H. Macromolecules 1989, 22, 649-653
15. Nateghi, M. R.; Zahedi, M.; Mosslemin, M. H.; Hashemain, S.; Behzad, S.; Minnai, A. Polymer 2005, 46, 11476-11483.
16. Dao, L. H.; Lecherc, M.; Guay, J.; Chevalier, J. W. Synthetic Metals 1989, 29, E377-E382.
17. D, Aprano, G.; Leclerc, M. J. Electroanal. Chem. 1993, 351, 145-158.
18. Sato, M.-A.; Tanaka, S.; Kaeriyama, K. J. Chem. Soc., Chem. Commun. 1986, 873.
19. Jen, K.-Y.; Miller, G. G.; Elsenbaumer, R. L. J. Chem. Soc., Chem. Commun. 1986, 1346.
20. Hotta, S.; Rughooputh, S. D. D. V.; Heeger, A. J.; Wudl, F. Macromolecules 1987, 20, 212.
21. Malinauskas, A.; Holze, R. Journal of Applied Polymer Science 1999, 73, 287-294.
22. Lêger, J. M.; Beden, B.; Lamy, C. Synthetic Metals 1994, 62, 9-15.
23. Mav, I.; Zigon, M. Synthetic Metals 2001, 119, 145-146
24. Hamelin, A. J. Electroanal.Chem. 1996, 407, 1.
25. Magnussen, O. M.; Hagebock, J.; Hotlos, J.; Behm, R. J. Farady Discuss. 1992, 94, 329.
26. Wang, J.; Davenport, A. J.; Issaacs, H.S.; Ocko, B. M. Science 1992, 255, 1416.
27. Nishizawa, T.; Nakada, T.; Kinoshita, Y.; Miyashita, S.; Sazaki, G.; Komatsu, H. Surf. Sci.1996, 367, L73.
28. Cuesta, A.; Kleinert, M.; Kolb, D. M. Phys. Chem. 2000, 2, 5684.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2009-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明